首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
介绍了近似支持向量机(PSVM)的原理及特点。为了将PSVM应用于高光谱图像的分类,提出了基于PSVM的有向无环图(DAG)多类分类方法(DAG PSVMs)。实验结果表明,DAG PSVM与传统的DAG SVM相比,性能基本保持不变,训练时间却大幅降低。  相似文献   

2.
近年来,海州湾赤潮暴发日益频繁,对当地经济发展和生态安全构成严重威胁.本文以海州湾2004~2006年每年5~10月赤潮实测资料和同期的水文气象资料为研究对象,首先通过因子分析的方法降低模型的维数,在17种与赤潮生消过程有密切联系的环境要素的基础上提取出营养盐、温度、耗氧量和pH值、水动力、降水等共计7个特征因子.然后对因子分析的结果结合赤潮状况利用支持向量机建立赤潮状况判别模型,采用径向基函数(RBF)作为核函数,并通过选择合适的模型参数组合,取得了90%以上的平均判别正确率,可以为沿海生产和管理部门发布赤潮预警信息提供依据.  相似文献   

3.
基于网格搜索的支持向量机核函数参数的确定   总被引:18,自引:0,他引:18  
为提高支持向量机的分类准确率,研究了支持向量机核函数的参数确定问题,得到了1种确定支持向量机核函数的参数的有效途径.利用网格搜索法可使各组核函数参数相互解耦,从而便于并行计算,提高了运行效率.将此方法用于测井岩性分类器的训练得到了较理想的仿真结果.  相似文献   

4.
一种基于支持向量机的纹理图像分类法   总被引:4,自引:3,他引:4  
支持向量机是机器学习领域的研究热点之一,是在统计学习理论基础上发展起来的新的学习算法。传统的分类法用于纹理图像分类效果往往不佳,该文研究了支持向量机的实现方法,并以纹理图像分类为例分析了支持向量机的分类性能。  相似文献   

5.
基于支持向量机理论的海水水质富营养化评价研究   总被引:13,自引:0,他引:13  
首次利用支持向量机(SVM)理论对海水水质富营养化的程度进行评价,并与BP人工神经网络方法所得结果进行比较,通过实例验证,说明SVM理论能较好地解决小样本的分类评价问题,评价效果良好,在水质评价领域有较好的应用前景。  相似文献   

6.
首先利用支持向量机(SVM)和人工神经网络(ANN)对Landsat 8 OLI多光谱影像进行基于光谱信息的土地利用监督分类;然后,对多波段进行主成分变换,提取第一主成分的主要纹理信息,与光谱信息一起进行融合光谱和纹理信息的SVM和ANN影像监督分类。对比分析发现:对中原地区,SVM是Landsat 8多光谱遥感影像分类的较优方法,尤其适用于农业用地信息提取;光谱分类即可达到较高精度,纹理信息对提高分类精度的作用十分有限。  相似文献   

7.
基于获得的海水浴场逐日两次观测资料及同期NCEP数值模拟结果(提取各种相关变量),通过求取两者之间的相互关系,并采用最优子集方法确定了对各预报要素具有重要意义的影响因子。针对海水浴场的气温、降水及能见度等要素的预报,应用支持向量机方法建立了相应的预测模型,最终获得不同海水浴场在不同预报时效、不同预报要素的数值产品释用结果。经过对比分析,各预报要素释用后的结果较释用前在预报准确率方面有较大的提高。  相似文献   

8.
提出了利用支持向量回归机算法(SVR)建立海水叶绿素-a浓度的软测量方法,采用灰色关联分析法获取叶绿素-a软测量模型的主要辅助测量变量。将基于支持向量回归机的叶绿素-a软测量结果与BP神经网络和T-S模糊神经网络方法进行了对比,结果表明,这种基于支持向量回归机的软测量方法能够有效测量海水叶绿素-a的浓度。  相似文献   

9.
在总结了目前海底底质分类研究的基础之上,率先提出利用计算机数值模拟技术对海底底质进行分类识别研究。相较于目前海底底质分类研究中所使用的水槽实验法,提出采用计算机数值正演技术模拟实际地震勘探中数据采集过程。在分类识别算法上,分别采用支持向量机(SVM)和模糊C均值聚类(FCM)算法对采集的数据进行分类,为使支持向量机分类识别率达到最大,引入差分进化算法对支持向量机中关键参数进行最优化搜索,并研究了向原始地震记录中加入10%,30%,50%的高斯白噪音时算法的稳定性。在分析了这两种算法分类识别的正确率及其各自的优缺点后,提出了海底底质分类识别的两步法,即(1)先利用模糊C均值聚类进行一粗糙的预测分类,在每一类中挑选聚类性较好的数据作为支持向量机的训练样本;(2)将上一步中筛选的样本作为支持向量机的训练样本,并用差分进化算法优化支持向量机分类参数,再利用训练好的支持向量机对其余数据做预测分类。鉴于计算机数值模拟的可重复性、高效快速性及本文提出的模糊C均值聚类-支持向量机方法的鲁棒性,为便于开展进一步研究,归纳总结了一套行之有效的采用计算机数值模拟技术开展海底底质分类识别研究的一般化流程。  相似文献   

10.
红树林是最典型的滨海生态系统之一,红树林种间类型的精确识别对于红树林生态系统保护、修复及碳储量评估具有重要意义。遥感是开展红树林种间类型识别的有效手段,但传统的遥感红树林分类方法多是基于像元开展的,分类结果“椒盐”现象严重且精度还有很大提升空间。因此,本研究以东寨港红树林保护区为例,基于Sentinel-2 MSI影像,在传统遥感分类方法的基础上引入图像分割技术,分别构建了面向对象的支持向量机(Support Vector Machine,SVM)和随机森林(Random Forest,RF)分类法,并在此基础上对各模型的分类精度和适用性进行了分析。模型对比结果表明:(1)图像分割技术的引入能有效改善分类结果的“椒盐”现象,提升红树林种间类型的识别精度,基于像元使用SVM和RF分类算法总体分类精度分别可达78.82%(Kappa=0.75)和82.94%(Kappa=0.82),面向对象的SVM和RF模型分类总体精度分别可达81.5%(Kappa=0.78)和92.67%(Kappa=0.88),相较于以像元为分类对象的模型而言,后者精度分别提高了2.68%和7.43%;(2)从4个模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号