首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 10 毫秒
1.
2.
3.
本文利用Kiel Climate Model(KCM模式)对全新世气候的模拟结果及其与北大西洋表层海水温度(sea surface temperature, 简称SST)重建记录的对比, 探讨了全新世北大西洋SST的变化趋势。浮游植物的长链烯酮不饱和度显示低纬北大西洋SST在全新世期间有升高趋势, 而在中纬和高纬地区表现为显著的下降趋势, 尤其是在中纬北大西洋西部, 最大降温幅度达到7.9℃/9.5ka。浮游有孔虫壳体的镁钙比值显示中纬北大西洋东部及高纬北大西洋有增温趋势, 而在中纬北大西洋西部及低纬北大西洋则有降温趋势, 但变化幅度均比较小, 绝大部分在2℃/9.5ka以下。气候模拟结果显示全新世北大西洋SST变化呈现明显的"三核型"经向模态, 在冬春季以增温为主, 降温限于拉布拉多海东南部的北大西洋海域; 在夏秋季以降温为主, 增温限于低纬和高纬北大西洋海域。模拟与重建的对比显示, 中纬和低纬北大西洋的长链烯酮不饱和度指标以及低纬西部的镁钙比指标可能反映夏秋季海温, 中纬北大西洋东部的镁钙比指标可能反映冬春季海温, 而中纬西部和高纬的镁钙比指标可能对4个季节的SST都有所反映。  相似文献   

4.
A tephra record is presented for a sediment core from Llyn Llech Owain, south Wales, spanning the early- to mid-Holocene. Seven cryptotephra deposits are discovered with three thought to correlate with known eruptions and the remaining four considered to represent previously undocumented events. One deposit is suggested to correlate with the ~6.9 cal ka bp Lairg A tephra from Iceland, whereas more distant sources are proposed as the origin for two of the tephra deposits. A peak of colourless shards in early-Holocene sediments is thought to tentatively correlate with the ~9.6 cal ka bp Fondi di Baia tephra (Campi Flegrei) and a second cryptotephra is tentatively correlated with the ~3.6 cal ka bp Aniakchak (CFE) II tephra (Alaska). The Fondi di Baia tephra has never been recorded beyond proximal sites and its discovery in south Wales significantly extends the geographical distribution of ash from this eruption. The remaining four cryptotephra deposits are yet to be correlated with known eruptions, demonstrating that our current understanding of widespread tephra deposits is incomplete. This new tephra record highlights the potential for sites at more southerly and westerly locations in northwest Europe to act as repositories for ash from several volcanic regions.  相似文献   

5.
Beetle remains from a small bog in southern Sweden contribute information concerning the forest history of the study area. The study shows that beetles are valuable indicators of woodland structures such as openness, field vegetation, presence of dead wood and disturbance factors such as climate change, fire regimes, grazing and land use. The early Holocene, ca. 8600–6450 cal. BC, was characterised by open, pine‐dominated woodlands maintained by fire and grazing disturbances. The changes in the wetland fauna, between 8600 and 7500 cal. BC, correlate well with low lake levels in southern Sweden. During the mid Holocene, ca. 6450–2400 cal. BC, the woodlands were relatively dense, with few openings in the canopy. Around 4200 cal. BC, there was a shift to a dominance of deciduous trees. Fire and grazing pressures were particularly low. Numbers of aquatic and hygrophilic beetles indicate dry conditions between ca. 5000 and 3000 cal. BC. During the late Holocene, ca. 2400 cal. BC to present, the woodlands opened up mainly through increased land use. The main disturbance factors were fire and grazing. The beetles indicate the formation of heather‐dominated heathland around 800 cal. BC. Copyright © 2008 John Wiley & Sons, Ltd. This article was published online on 23 December 2008. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected (5 August 2009).  相似文献   

6.
7.
With a view to obtain palaeoclimatic data from a climatically sensitive region we have studied core samples from Nal Sarovar, a large shallow lake lying within the palaeodesert margin of Thar in western India. A combination of C/N ratios and δ13C on a radiocarbon-dated core section have been used as climatic proxies. A high-resolution record extending back to ca. 6.6 ka BP has been reconstructed. The data indicate that, in the past, climate has varied from drier to wetter than present on time-scales of few hundreds to few thousands of years. There are, however, significant differences on the timing of these wet and dry periods, when compared with the available data from lakes farther north, in Rajasthan. Further, it looks unlikely that during the 6.6 ka the catchment areas of Nal Sarovar experienced such a significant increase in rainfall as has been suggested for the Rajasthan lakes. Interestingly, drier periods in Nal Sarovar data appear to correlate well with periods of glacier expansion in Eurasia indicating that the palaeoclimatic variations recorded in Nal Sarovar are a regional feature. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0′N; 10°16.1′W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation.  相似文献   

10.
A wide range of palaeoenvironmental evidence from the Holocene has suggested periodicities in the Earth's climate of 10s to 1000s of years. Identifying these millennial‐, century‐ and decadal periodicities, and their impacts, is critical in developing a fuller understanding of natural climate variability. Any solar‐induced climatic change needs to be distinguished from other causes of natural climate variability and from short‐term catastrophic events induced either by external or internal processes. Such events might themselves generate a periodicity, or in combination with other forcing factors they may contribute towards a periodicity (and so spuriously imply a universal and continuing periodicity in the climate record), or they may resonate with a solar‐induced periodicity. Here, evidence from peat records for periodicity in climate change over the mid to late Holocene is reviewed and this is followed by a test of the replicability of claimed periodicities using blanket peat data covering the past 2000 yr from four sites in the British Isles. Results suggest that the mires studied do go through phases of being responsive to periodic forcing factors, with ca. 200, ca. 80 and 60–50 yr wavelengths reflected in some data sets. However, the patterns shown are not consistent. This could be the result of local conditions at individual mires (human impact, sensitivity and vegetation succession) or of changes in the strength or nature of global forcing factors. Assessing a solar–mire link remains difficult because the century‐scale variations of the Sun show different intervals between solar minima, the durations of which are themselves unequal, and because the proxy‐climate data‐sets from peat profiles may themselves not be dated with sufficient precision and/or accuracy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Pollen data are well established for quantitative climate reconstructions over long timescales, including the Holocene and older interglacials. However, anthropogenically induced environmental change in central Europe was strong during the last 4 ka, challenging quantitative reconstructions of this time period. Here we present quantitative climate reconstructions based on pollen analyses and evaluate them with the peat humification record and the stable carbon isotopes of Sphagnum plant material (δ13Ccellulose). All analyses were carried out on the same 7.5 m long, largely ombrotrophic peat bog section from Dürres Maar. Three different methods were used for the quantitative climate reconstructions on the basis of the pollen data: (1) a probabilistic indicator taxa approach (the ‘pdf method’); (2) a modern analogue technique based on pollen taxa from modern surface samples (cMAT); and (3) a modern analogue technique expanded by plant functional types (pMAT). At Dürres Maar the peat humification is only affected by peat cutting during the Roman period and the Middle Ages. The stable carbon isotopes are seemingly unaffected by human impact. Thus both proxies provide independent data to evaluate the reconstructions on the basis of pollen data. The quantitative climate reconstructions on the basis of the individual methods are in general relatively similar. Nevertheless, distinct differences between the individual approaches are also apparent, which could be attributed to taxa that reflect human impact on a local to regional scale. While the pdf method appears to be relatively robust to all observed anthropogenically induced vegetation changes, it potentially underestimates climate variability. This method is therefore expected to be independent of local site characteristics and to provide robust quantitative estimates of climatic trends rather than of climatic variability of small amplitude. This is of value for palaeoclimate reconstructions of older interglacials, for which neither multiple sites nor independent climate proxies are available for comparison. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.  相似文献   

13.
Detrital zircons from Holocene beach sand and igneous zircons from the Cretaceous syenite forming Cape Sines (Western Iberian margin) were dated using laser ablation – inductively coupled plasma – mass spectrometry. The U–Pb ages obtained were used for comparison with previous radiometric data from Carboniferous greywacke, Pliocene–Pleistocene sand and Cretaceous syenite forming the sea cliff at Cape Sines and the contiguous coast. New U–Pb dating of igneous morphologically simple and complex zircons from the syenite of the Sines pluton suggests that the history of zircon crystallization was more extensive (ca 87 to 74 Ma), in contrast to the findings of previous geochronology studies (ca 76 to 74 Ma). The U–Pb ages obtained in Holocene sand revealed a wide interval, ranging from the Cretaceous to the Archean, with predominance of Cretaceous (37%), Palaeozoic (35%) and Neoproterozoic (19%) detrital‐zircon ages. The paucity of round to sub‐rounded grains seems to indicate a short transportation history for most of the Cretaceous zircons (ca 95 to 73 Ma) which are more abundant in the beach sand that was sampled south of Cape Sines. Comparative analysis using the Kolmogorov–Smirnov statistical method, analysing sub‐populations separately, suggests that the zircon populations of the Carboniferous and Cretaceous rocks forming the sea cliff were reproduced faithfully in Quaternary sand, indicating sediment recycling. The similarity of the pre‐Cretaceous ages (>ca 280 Ma) of detrital zircons found in Holocene sand, as compared with Carboniferous greywacke and Pliocene–Pleistocene sand, provides support for the hypothesis that detritus was reworked into the beach from older sedimentary rocks exposed along the sea cliff. The largest percentage of Cretaceous zircons (<ca 95 Ma) found in Holocene sand, as compared with Pliocene–Pleistocene sand (secondary recycled source), suggests that the Sines pluton was the one of the primary sources that became progressively more exposed to erosion during Quaternary uplift. This work highlights the application of the Kolmogorov–Smirnov method in comparison of zircon age populations used to identify provenance and sediment recycling in modern and ancient detrital sedimentary sequences.  相似文献   

14.
Zircon U‐Pb dating of three orthogneiss samples from the North Dabie terrane (NDT) is undertaken in order to reconstruct their formation and evolutionary histories, and also the crustal architecture of the Dabie orogen after Triassic subduction and exhumation. SHRIMP zircon U‐Pb dating, in combination with back scattered electron (BSE) imaging and Laser Raman spectrometry, provides accurate identification of the core, mantle and rim structure for zircon growth during protolith formation and overgrowth during subduction/exhumation and post‐collisional metamorphism. Concordant U‐Pb ages of 760–730 Ma and high Th/U ratios of >0.4 are obtained for relict oscillatory zoning fields of inherited cores that were not metamictized. These features suggest that these ages represent the time of magmatic protolith formation during the breakup of Rodinia. The overgrown mantle domains around the metamictized cores are clean with few mineral inclusions (e.g. quartz, garnet and apatite). Mantle domains have low Th/U ratios of <0.1 and yielded U‐Pb ages of 215–205 Ma, which are slightly younger than the known ages of peak ultrahigh‐pressure (UHP) metamorphism, suggesting that overgrowth took place during initial exhumation. The ages are similar to the time of retrograde metamorphism of the UHP orthogneisses in the Central Dabie terrane (CDT). Overgrown rims are also clean, with a few mineral inclusions of apatite and quartz. They yield two groups of U‐Pb ages, 138–137 Ma and 124–120 Ma. The former is considered to be the time of onset of orogenic extension and tectonic collapse, whereas the latter falls into the age range of widespread magmatism in the Dabie orogen, and is regarded as the time of extension climax that resulted in intensive anatexis of the crust. Whole‐rock Sr‐Nd isotope analyses of four orthogneisses show εNd(t) values of ?1.2 to ?15 and ISr values >0.719, similar to the values obtained from UHP orthogneisses in the CDT. It is concluded that, as with the CDT, the orthogneisses with episodic zircon growths from the NDT should also be a part of the exhumed slice following the continental deep subduction. However, the orthogneisses in this study were buried at a lower level in the orogenic crust compared with those of the CDT prior to the Cretaceous magmatism. Therefore, the orthogneisses from the NDT were affected by the Cretaceous magmatism whereas the CDT orthogneisses were not affected.  相似文献   

15.
Contrasting compositions and densities of fluid inclusions were revealed in siderite–barite intergrowths of the Dro?diak polymetallic vein hosted in Variscan basement of the Gemeric unit (Central European Carpathians). Primary two‐phase aqueous inclusions in siderite homogenized between 101 and 165 °C, total salinity ranged between 18 and 27 wt%, and CaCl2/(NaCl + CaCl2) weight ratios were fixed at 0.1–0.3. By contrast, mono‐ and two‐phase aqueous inclusions in barite exhibited total salinities between 2 and 22 wt%, and the CaCl2/NaCl ratios ranged from NaCl‐ to CaCl2‐dominated compositions. The aqueous inclusions in barite were closely associated with very high‐density (0.55–0.745 g cm?3) nitrogen inclusions, in some cases containing up to 16 mol.% CO2. Crystallization P–T conditions of siderite (175–210 °C, 1.2–1.7 kbar) constrained by the vertical oxygen isotope gradient along the studied vein, isochores of fluid inclusions and the K/Na exchange thermometer corresponded to minimal palaeodepths between 4.3 and 6.3 km, assuming lithostatic load and average crust density of 2.75 g cm?3. Maximum fluid pressure during barite crystallization attained 3.6–4.4 kbar at 200–300 °C, and the most dense nitrogen inclusions maintained without decrepitation the residual internal pressure of 2.2 kbar at 25 °C. Contrasting fluid compositions, increasing depths of burial (~4–14 km) and decreasing thermal gradients (~40–15 °C km?1) during initial mineralization stages of the Dro?diak vein reflect Alpine orogenic processes, rather than an incipient Permian rifting suggested in previous metallogenetic models. Siderite crystallized at rising P–T in a closed, rock‐buffered hydrothermal system developed in the Variscan basement during the north‐vergent Cretaceous thrusting and thickening of the Gemeric crustal wedge. Variable salinities of the barite‐hosted inclusions reflect a fluid mixing in open hydrothermal system, and re‐equilibration textures (lengths of decrepitation cracks proportional to fluid inclusion sizes) correspond to retrograde crystallization trajectory coincidental with transpression or unroofing. Maximum recorded fluid pressures indicate ~12‐km‐thick pile of imbricated nappe units accumulated over the Gemeric basement during the Cretaceous collision.  相似文献   

16.
The UK37′ index has proven to be a robust proxy to estimate past sea surface temperatures (SSTs) over a range of time scales, but like any other proxy, it has uncertainties. For instance, in reconstructions of the Last Glacial Maximum (LGM) in the northern North Atlantic, UK37′ indicates higher temperatures than those derived from foraminiferal proxies. Here we evaluate whether such warm glacial estimates are caused by the advection of reworked alkenones in ice‐rafted debris (IRD) to deep‐sea sediments. We have quantified both coccolith assemblages and alkenones in sediments from glaciogenic debris flows in the continental margins of the northern North Atlantic, and from a deep‐sea core from the Reykjanes Ridge. Certain debris flow deposits in the North Atlantic were generated by the presence of massive ice‐sheets in the past, and their associated ice streams. Such deposits are composed of the same materials that were present in the IRD at the time they were generated. We conclude that ice rafting from some locations was a transport pathway to the deep sea floor of reworked alkenones and pre‐Quaternary coccolith species during glacial stages, but that not all of the IRD contained alkenones, even when reworked coccoliths were present. We speculate that the ratio of reworked coccoliths to alkenone concentration might be useful to infer whether significant reworked alkenone inputs from IRD did occur at a particular site in the glacial North Atlantic. We also observe that alkenones in some of the debris flows contain a colder signal than estimated for LGM sediments in the northern North Atlantic. This is also clear in the deep‐sea core studied where the warmest intervals do not correspond to the intervals with large inputs of reworked coccoliths or IRD. We conclude that any possible bias to UK37′ estimates associated with reworked alkenones is not necessarily towards higher values, and that the high SST anomalies for the LGM are unlikely to be the result of a bias caused by IRD inputs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号