首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
PRESSURE OF WATER SHORTAGE ON AGRICULTURE IN ARID REGION OF CHINA   总被引:2,自引:0,他引:2  
1INTRODUCTIONWiththedevelopmentoftheworld,waterdemandisincreasing,especiallywiththegrowthofpopulationinthelast50years,waterdemandforirrigationhasgreatlyincreasedforfoodproduction.Inthearidandsemi-aridareas,watershortagebecomesaheavierproblemtorestrictfoodproduction,localeconomyandenvironmentalprotection.China,with22%ofthetotalpopulationintheworld,hasonly8%offreshwaterintheglobe;watershortagehasaffectedagricultureandresident'slifeinthenorthernChina.SomescientistsindicatedthatChina'swaters…  相似文献   

2.
The research on the present situation of soil and water development and utilization in Shiyang River Basin shows that water resources and eco-environment situation in this area are near the edge of collapse. Since the water crises occurred in the 1970s, problems caused by continuous decrease of water resources have been becoming serious year by year and eco-environment crisis occurred as a consequence. Up to now, 10 380ha of irrigated lands have been abandoned due to sand coverage and water shortage in the basin. Ground water was over exploded in Wuwei and Minqin because of water shortage. Ground water table in many places dropped under 5m (which is the ecology water table level), thus about 3000ha of Elaeagnus angustifolia forest come to dead and another 5800ha become feeble, and wind-drift sand near the oasis become alive. According to the current situation, if water utilization scope was not enlarged, a water transfer volume of 600×106m3/a from other areas will be suitable to keep water resources and eco-environment safety in the basin, and also 70×106m3/a will be left as spare water. Under this condition the water resources and eco-environment of the basin can reach the critical safety line of 2.032×109m3/a; or if 180×106m3 of water can be transferred from other areas, the water resources can reach the safety warning line of 1.732×109m3/a. Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 40235053) and Lanzhou Jiaotong University "Qinglan" Foundation Biography: ZHANG Ji-shi (1963-), male, a native of Tongwei of Gansu Province, senior engineer, specialized in water resources and climate change in Northwest China. E-mail: zjs1963@yahoo.com.cn; hangjs@mail.lzjtu.cn  相似文献   

3.
Based on the simulation with the Ocean-Atmosphere Coupled Model CCSM and Ocean Model POP under the greenhouse gas emission scenario of the IPCC SRES A2 (IPCC, 2001), and on the earth crust subsidence and glacier melting data, the relative sea level change is obtained along the coast of China in the 21st century. Using the SRTM elevation data the submergence of coastal low land is calculated under the extreme water level with a 100-year return period. The total flooding areas are 98.3×103 and 104.9×103 km2 for 2050 and 2080, respectively. For the three regions most vulnerable to extreme sea level rise, i.e., the coast of Bohai Bay, the Yangtze River Delta together with neighboring Jiangsu Province and northern Zhejiang Province, and the Pearl River Delta, the flooded areas are 5.0×103, 64.1×103 and 15.3×103 km2 in 2050 and 5.2×103, 67.8×103 and 17.2×103 km2 in 2080, respectively.  相似文献   

4.
Ma  Yanyan  Li  Guangxue  Ye  Siyuan  Zhang  Zhiheng  Zhao  Guangming  Li  Jingyang  Zhou  Chunyan  Ding  Wenjie  Yang  Xin 《中国海洋湖沼学报》2010,28(6):1362-1370
The water and sediment discharge regulation (WSDR) project, which has been performed since 2002 before flood season every year, is of great significance to the river management in China. Until 2007, six experiments have been fulfilled to evaluate the effect of the project on the natural environment. To fill the gap of investigations, a study on flood and suspended sediment transportation and channel changing along the distributary channel of the Huanghe (Yellow) River was conducted during the WSDR project period in 2007. The lower channel was scoured rapidly and the channel became unobstructed gradually several days after the flood peak water was discharged from the Xiaolangdi Reservoir. Within four days after the flood peak at 3 000 m3/s entered the distributary, the channel in the river mouth area was eroded quickly. Both the mean values of area and depth of the main channel were tripled, and the maximum flood carrying capacity increased to 5 500 m3/s or more. Then, the river channel was silted anew in a very short time after completion of the WSDR. Favored by the WSDR project, the river status in April 2008 became better than that of the year before. The adjustment ranges of main channel parameters were about 30%, 10%, and 10% at sections C2, Q4, and Q7, respectively. The process of rapid erosion-deposition was more active 15 km away in the channel from the river mouth due to the marine influence. It is reasonable for discharging sediment at concentration peak from Xiaolangdi Reservoir at the end of the flood peak. As a result, the sediment peak reached the river mouth about two days later than that of the water current. In addition, the WSDR project has improved the development of the estuarine wetland. Wetland vegetation planted along the river banks restrained the water flow as a strainer and improved the main channel stability. It is suggested to draw water at mean rate of 150 m3/s from the Huanghe River during flood periods, because at the rate the water in the wetland would be stored and replenished in balance. Moreover, we believe that cropland on the river shoal of the lower Huanghe River should be replaced by wetland. These activities should achieve the Huanghe River management strategy of “To concentrate flow to scour sediment, stabilize the main channel, and regulate water and sediment”.  相似文献   

5.
The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world's 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea l  相似文献   

6.
Based on the data from gauging stations,the changes in water discharge and sediment load of the Huanghe (Yellow)River were analyzed by using the empirical mode decomposition(EMD)method.The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual,decadal,and multi-decadal scales,caused by the periodic oscillations of precipitation,and El Nio/Southern Oscillation(ENSO)affects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale.The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities,and human activities attribute more than precipitation to the reduction in the water discharge and sediment load,furthermore,water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load,respectively.The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.  相似文献   

7.
TheSonghuaRiver,oneofthemajorriversinNortheastChina,hastwosources:thenorthsourceistheNenjiangRiverandthesouthsourceistheSecondSonghuaRiver.ThetrunkstreamoftheNenjiangRiver,risingatthesouthernfootoftheYilehuliMountain,is1370kmlonganditswatershedareais…  相似文献   

8.
The Hexi Corridor is an important base of agriculture development in Northwest China. According to recent statistics, there are 65.94×108m3 of water resources available in the Hexi Corridor. At present, net consumption in development and utilization is 43.33×108m3. Water supply and demand reach a balance on the recent level of production, but loss of evaporation and evapotranspiration is as much as 25.69×108m3. So net use efficiency of water resources is 59%. Based on analyzing balance between water and land considering ecological environment at present, there exists the serious water shortage in the Shiyang River system where irrigation lands have overloaded. There is a comparative balance between supply and demand of water resource in the Heihe River system; and the Sule River system has some surplus water to extend irrigation land. Use of agriculture water accounts for 83.3% and ecological forest and grass for 6.9%. The Hexi Corridor still has a great potential for water saving in agriculture production. Water-saving efficiency of irrigation is about 10% by using such traditional technologies as furrow and border-dike irrigation and small check irrigation, and water-saving with plastic film cover and techniques of advanced sprinkler and drip/micro irrigation etc. cansave more than 60% of irrigated water. Incremental irrigation area for water-saving potential in the Hexi Corridor has been estimated as 56% – 197% to original irrigation area. So the second water sources can be developed from water saving agriculture in the Hexi Corridor under Development of the Western Part of China in large scale. This potential can be realized step by step through developing the water-saving measures, improving the ecological condition of oasis agriculture, and optimizing allocation of water resources in three river systems. Foundation item: Under the auspices of the Key innovation Project Engineering of Chinese Academy of Sciences (KZcx-1-10-03) Biography: GAO Qian-zhao (1942 –), male, a native of Changzhou, Jiangsu, Professor and supervisor of Ph. D students. His research interests include hydrology and rational utilization of water resources in the arid zone.  相似文献   

9.
1 INTRODUCTIONInrecentyearstheecoenvironmentoftheChangjiangRiverbasinsufferedfromseveredestruction,sedimentcontentintheriverwatergreatlyincreased,thedownstreamcoursewasseriouslysiltedupandfloodcontrolcapacitywasweakened.Thesimilarsituationalsooccu…  相似文献   

10.
GLACIER MELTWATER RUNOFF IN CHINA AND ITS NOURISHMENT TO RIVER   总被引:3,自引:0,他引:3  
GLACIERMELTWATERRUNOFFINCHINAANDITSNOURISHMENTTORIVER¥YangZhenniang(杨针娘)(LanzhouInstituteofGlaciologyandGeocryology,theChines...  相似文献   

11.
Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km2·a) and 61.58t/(km2·a) by deducting the HCO 3 derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84×103mol/km2 and 452.46×103mol/km2annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51×109mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins. Foundation item: Under the auspices of Ministry of Science and Technology Project of China (No. G1999043075) Biography: LI Jing-ying (1974-), female, a native of Xinye of Henan Province, Ph.D., associate professor, specialized in environmental geochemistry. E-mail: wxxljy2001@public.qd.sd.cn  相似文献   

12.
Liu  Jie  Feng  Xiuli  Liu  Xiao 《中国海洋湖沼学报》2017,35(3):693-703
One of the most important factors controlling the morphology of the modern Huanghe(Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5–3.5 cm/m. It takes about 15–20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.  相似文献   

13.
ANANALYSISOFWATERRESOURCECHARACTERISTICSOFTHERIVERSINTHENORTHERNSLOPEOFTHEKUNLUNMOUNTAINSXuYoupeng(许有鹏);GaoYunjue(高蕴珏)(Depart...  相似文献   

14.
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (I) and a fluctuant water table (IV), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%–57% higher than that at static high water table (II and III). After nitrogen addition, however, highest CO2 emission was found at II and lowest emission at III. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland. Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 90211003) and the Knowledge Innovation Program of Chinese Academy of Sciences (No. KACX3-SW-332) Biography: YANG Ji-song (1978-), male, a native of Chengwu of Shandong Province, Ph.D. candidate, specialized in environmental ecology and wetland biogeochemistry. E-mail: yangjisong@neigae.ac.cn  相似文献   

15.
For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average, 527×10-6, 455×10~6 and 72×10-6 were found for TP,IP and OP for the surface sediments taken in the two cruises. The distribution of OP and IP was controlled by the sample particle size: OP content increased with the decreasing of the sample particle size, while the maximal value of IP was found in the silt fraction due to the existence of apatite in our samples. Vertical distributions reflected well the channel change of the Huanghe River. Results from the multiple regressions between the three forms of phosphorus and the percentages of different particle size agreed well with the analytical data.  相似文献   

16.
Eighy-one CTD profiles gathered in springtime were used for northem East China Sea tbermohalinefinestructure studies indicating that the finestructure properties vaned with region and depth, as shown infinesructure specra, distribution of Cox numbers etc..Some results closely wiated to distribution of watermasses and Analysis of two typical profiles revealed differenes in autospectra of temperature,salihity and potential density gradients, probobility distribution of temperature finestructure gradient,Cox numberc.etc. The probability density function of vertical temperature gradients, which varied withsample interval, is given. The variances of temperatare finestructare gradient are used to estimate the lat-eral diffusivity and lateral temperatare flux, which were 10.3 (m~2/s) and 5.5×10~(-4) (℃ m/s),respectivly.  相似文献   

17.
该文利用圆盘渗透仪,对辽河三角洲湿地4种不同的生境进行渗透系数的测定,并对4种生境的渗透系数进行老人分析比较,作出辽河三角洲湿地渗透系数的分布状况图。从图上可以看出,辽河三角洲湿地渗透系数值最大值为(3.2~3.4)×103cm/s,平均值为1.5×103cm/s。  相似文献   

18.
Hyper-spectrum models for monitoring water quality in Dianshan Lake,China   总被引:1,自引:0,他引:1  
The correlation between water quality parameters and hyper-spectral reflectance is studied with models established for each parameter and applied in Dianshan Lake, in the upstream of the Huangpu River running through Shanghai, China. Models are for dissolved oxygen (DO in mg/L): R720/R680 = 20.362×(R720/R680)2-31.438×(R720/R680)+19.156; for turbidity (NTU): R*714.5 = 206.07× (R*714.5)2-582.5×R*714.5 + 423.24; and for total phosphorus (TP in mg/L): R*509.5 = 16.661× (R*509.5)2-32.646×R*509.5+16.116. The R2 values are 0.770 8, 0.660 4 and 0.738 7, respectively, showing strong positive relationships. The models were then applied to assess water quality of different times. Results are quite satisfactory for some samples.  相似文献   

19.
Chao  Jinyu  Feng  Song  Hao  Yingdong  Lin  Jianing  Zhang  Bin 《中国海洋湖沼学报》2023,41(1):251-266

To date, little attention has been paid to the effects of organophosphate esters (OPEs) pollution on aquacultural environment and aquatic product safety. Huanghe (Yellow) River delta area is one of the largest aquaculture centers in China, where ecological security protection is crucial in the national strategy of China. To explore the pollution characteristics, bioaccumulation, and health risks of OPEs in aquaculture farms in the Huanghe River delta and natural water bodies in the adjacent seas, five species of organisms from different farm types nearby the Huanghe River delta, and the corresponding culture water and sediments were sampled in this study. The total concentrations of ∑13OPEs in water, sediments, and organisms were 51.53–272.18 ng/L, 52.63–63.17 ng/g dry weight (dw), and 46.82–108.90 ng/g dw, respectively. Among the five types of culture ponds, the water samples from the swimming crab and hairy crab culture ponds exhibited higher OPEs, the concentration of OPEs in the sediments from the few ponds was relatively balanced, and the OPEs in the organism from the holothurian ponds was higher. Tris (1,3-dichloro-2-isopropyl phosphate) (TDCP) was the main contaminant in water samples and tripropyl phosphate (TPrP) in sediments and organisms. However, trisphenyl phosphate (TPhP) showed the strongest bioaccumulation ability, followed by 2-ethylhexyl diphenyl phosphate (EHDPP) and TPrP. The bioaccumulation capacities of the five species were as follows: prawn > holothurian > hairy crab > swimming crab > carp. These five types of organisms, as main seafood in human consumption, were at low risk of negative impacts of pollution. However, the risk from the mixture of organophosphate flame retardants (OPFRs) still requires more attention due to the increasing consumption and production in the world.

  相似文献   

20.
The investigation shows that the concentrations of nutrients are high in estuarine and coastal waters and low in offshore waters. The concentration of nitrate in estuaries is controlled through a physical mixing process and is also affected by biotic activity. The annual transport of total inorganic nitrogen and dissolved phosphate-phosphorus from the Huanghe River water to the sea is about 8.45 ×104 and 1.45×103 tons respectively. The distributions of inorganic nitrogen and silicate in interstitial water of surface sediments are similar to those in surface and bottom seawater. Their contents in interstitial water are 227–552 μmol/l (average375) for ammonia, 0.31–9.0 μmol/l (average 1.6) for nitrite, 0–41 μmol/l (average6.0) for nitrate, and 41–139 μmol/l (average 77) for silicate. The average concentrations of phosphate in the surveyed area are 0.64 μmol/l for seawater and 1.2 μmol/l for interstitial water. A cycle of phosphate in the estuary is also suggested in this paper. Contribution No. 1434 from Institute of Oceanology, Academia Sinica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号