首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The accumulation of heavy metals and trace elements has been investigated in a well laminated sequence of Holocene and late Pleistocene lake sediments composed of diatomaceous gyttja, tuff and silt and clay sediments. Varve chronology of the annually deposited gyttja yielded a continuous high-resolution time sequence and allowed the absolute age dating of the sediment. Fluxes of elements remained largely uniform from the late Pleistocene into the Holocene (12 867–2 364 VT years ago; VT: varve time, years before 1950). Higher trace element and heavy metal fluxes occur from 2 322 to 862 VT years ago and reached their maxima in the uppermost sediments (<845 VT years ago). These increasing element fluxes correlate with increasing inputs of clastic material. The changing accumulation rates are the result of elevated soil erosion in the lake catchment caused by human settlement, deforestation and agricultural activities. Thus disturbances of the natural geochemical cycles of the Holzmaar region have occurred since the beginning of the Iron Age and especially since the beginning of the Middle Ages. Received: 29 May 1996 · Accepted: 19 August 1996  相似文献   

2.
 Trace element geochemistry of humus (<0.425 mm) and till (<0.002 mm) collected in the Flin Flon-Snow Lake area, northern Manitoba and Saskatchewan, provides a regional context for assessing smelter contamination in the environment. The area includes a Cu-Zn smelter known to discharge As, Cd, Cu, Fe, Hg, Pb, and Zn. In this study, sequential extraction analyses, scanning electron microscopy and x-ray diffraction analyses were used on a suite of samples to determine: (1) the chemical and physical characteristics of heavy metals in surficial sediments related to distance from the smelter, (2) criteria for assessing the relative contribution of these metals from natural and anthropogenic sources, and (3) the potential of these metals for remobilization in the environment. Humus geochemistry reflects the anthropogenic and natural component of heavy metal concentrations. Smelter-related elements show anomalously high values adjacent to the smelter, decreasing with distance until background values are reached at 70–104 km, depending on the element. In humus, Zn is associated primarily with labile phases; Hg with non-labile phases. Adjacent to the smelter, high proportions and concentrations of Zn and Hg in non-labile phases, indicative of smelter-derived particulates, are confirmed by SEM examination. The particles occur as spheres, irregular grains, and with organics. With increasing distance from the smelter, the geochemical response to bedrock composition is more obvious than the anthropogenic input. Till geochemistry reflects the natural variation imposed by bedrock composition. At highly contaminated sites (<3 km from the smelter), increased percentages of smelter-related elements in labile phases suggests heavy metals are leached from humus to the underlying sediment. Received: 5 November 1996 · Accepted: 31 March 1997  相似文献   

3.
 The 11 lateral lakes of Coeur d'Alene River valley in northern Idaho have received heavy metal contamination from over a century of upstream mining. The lateral lakes lie within the flood plain of the Coeur d'Alene River, and in their bottom sediments is preserved a stratigraphic record of the upstream mining operations. To characterize the contaminated sediments in the lateral lakes, sampling techniques, including the Livingston piston corer and the Huttenen freeze box, have been developed by Quaternary geologists to preserve the vertical stratigraphy in the samples. From 26 cm to over 55 cm of undisturbed tailing sediments, commonly with “varve-like” features, have been found in each of the lateral lakes, with maximum concentrations by weight of lead at 3.8%, zinc at 3.4%, arsenic at 340 mg/kg, cadmium at 120 mg/kg and mercury at 7 mg/kg. The contamination in the lakes appears to be restricted to the shallow subsurface and heavy metal concentrations generally drop to background levels within a meter of depth. Received: 22 May 1998 · Accepted: 21 September 1998  相似文献   

4.
In this study, environmental magnetic, heavy metal and statistical analyses were conducted on 21 surface sediments collected from Chennai coast, India, to examine the feasibility of heavy metal pollution using magnetic susceptibility. The Chennai coastal sediment samples are dominated by ferrimagnetic minerals corresponding to magnetite-like minerals. The percentage of frequency dependent magnetic susceptibility reflects the presence of super-paramagnetic/single domain magnetic minerals in Chennai harbour, Cooum and Adayar rivers sediments. High pollution load index in sample E1, E2, CH7, C11, C12 and A16 is mainly due to anthropogenic activities such as, harbour activities, Cooum and Adayar rivers input and industrial effluent. Factor analysis shows that the magnetic concentration dependent parameters (χ, χ ARM and SIRM) covary with the heavy metal concentrations, suggesting that the input of magnetic minerals and heavy metals in Chennai coastal sediments are derived from the same anthropogenic sources. Strong correlation obtained between pollution load index (PLI) and concentration dependent parameters (χ, χ ARM and SIRM) for the polluted samples with magnetic susceptibility excess of 50×10 − 8 m3kg − 1. Significant correlations between heavy metals and magnetic susceptibility point out the potential of magnetic screening/monitoring for simple and rapid proxy indicator of heavy metal pollution in marine sediments.  相似文献   

5.
 Distribution of the trace elements Cr, Cu, Ni, Pb and Zn in surficial sediments of the river/sea environment in Danang – Hoian area (Vietnam) was investigated to examine the degree of metal pollution caused by anthropogenic activities. Point sources from domestic and industrial wastes are identified as dominant contributors of trace element accumulation. Surficial sediments of Hoian River show extremely high total concentrations of Cu (Average Concentration 295 μg/g), Ni (AC 112 μg/g), Pb (AC 396 μg/g) and Zn (AC 429 μg/g) that exceed assigned safety levels ER-M. Similarly, the sediments of Han River show high Pb (AC 188 μg/g) and Zn (AC 282 μg/g) contents. In marine sediments of Thanhbinh beach Pb is also enriched (138 μg/g) above guideline levels. In contrast the sediments of the Cude River are dominated by trace element concentrations close to background values. Received: 17 December 1998 · Accepted: 6 May 1999  相似文献   

6.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

7.
 The Oka River basin is located in the Urdaibai National Biosphere Reserve, North Spain. In order to obtain a preliminary view of its environmental conditions, nitric acid extractable Fe, Mn, Zn, Pb, Cu, Cr, Ni and Co, organic matter content (L.O.I.), geochemical fractionation of heavy metals and mineralogical composition were analysed in surficial sediments (fraction <63 μm) collected in October 1991. Relatively high concentrations of metals occurred in a sampling site upstream, due to a local natural enrichment controlled by weathering of volcanic rocks. Geochemical fractionation confirmed the lithogenic origin of metals, which were mainly associated to the detrital phase. The significant increase of heavy metals found in some samples collected in the municipal area of Gernika suggested a pollution effect, related to anthropogenic wastes. Large amounts of metallic slags have been found mixed with the sediments upstream from this locality. Nevertheless, in view of their composition, it is unlikely that these slags constitute a significant source of heavy metals in the studied area. In a second sampling in October 1997 an apparent decreasing trend in some heavy metal levels was noted, particularly for Pb and Cu. Nowadays, enrichment factors relative to background values confirm moderate anthropogenic influence on Zn, Pb, Cu, Cr and Ni concentrations. However, heavy metal levels in the Oka river sediments are much lower than those detected in other major rivers of the Basque Country (Nervión, Urumea, Deba). Received: 7 July 1997 · Accepted: 4 July 1998  相似文献   

8.
 Potentially toxic metals tracked by the Arctic Monitoring and Assessment Program were analysed in sediments from the Svalbard western coastal zone. These include As and Hg found as contaminants in other Arctic seas as well as other elements (e.g. Pb, V, Cu, Zn, Cr, Ni). Svalbard shelf sediments contain average values of 12 ppm As, 12 ppm Pb, 56 ppb Hg and 114 ppm V. These values increase in Isfjorden sediments to 15 ppm As, 28 ppm Pb, 99 ppb Hg and 210 ppm V. Cluster analysis yields a major cluster that is likely related to clay minerals (Al, K, Ti, Mg) and sorption onto them of transition (Cu, V, Cr, Sc) and other elements (Pb, Rb). A second significant cluster includes Ca, Sr and plagioclase. The Svalbard western shelf is a natural geochemical environment. The possible incipient contamination of fjord sediments by As, Pb, Hg and V should be evaluated for possible links to anthropogenic sources. If links are found, remediation must be used to stop the input and preserve a pristine Svalbard fjord environment. Received: 21 December 1998 · Accepted: 15 March 1999  相似文献   

9.
 Doon Valley is surrounded by two major river systems (Ganga and Yamuna) on either side, with a water divide passing nearly across the centre of the valley, and is sandwiched between two mountain ranges in the fragile ecological systems of the Himalayan foothills. In total 398 soil samples were collected from the valley in a grid pattern (∼1 sample per 2 km2) and investigated for their heavy metal (Cr, Cu, Ni, Pb and Zn) abundances that are environmentally sensitive. Comparison of the heavy metal abundances with the contamination threshold values (CTV) revealed that most of these elemental abundances in Doon Valley soils fall well within the range of the uncontaminated to slightly contaminated category. In the case of Cr and Ni, a sizeable number of samples exceeded the CTV (250 and 100 mg kg–1 respectively) with an overall background value of 109 and 52 mg kg–1 respectively. Sites of high Cr and Ni mostly occur in the Ganga Catchment (GC) sector that includes even relatively undisturbed forestland. The source of this contamination is attributed to geological factors which indicate contribution from the mafic volcanics of the Lesser Himalaya. This is also consistent with the distribution pattern of Mn and Fe, though their abundance levels are not alarming. The background concentration of Pb is low (22 mg kg–1) in Doon Valley soils; however, signs of gradual Pb contamination are palpable in and around the centre of the Dehra Dun city and along the highways. Aluminium normalized heavy metal ratios were found to exhibit narrow variability in the case of Cu, Ni and Cr and had good correlation with Al, indicating their affinity and association with the clay minerals. On the other hand, Pb and Zn seem to be associated with non-silicate sources. Received: 7 January 2000 · Accepted: 30 July 2000  相似文献   

10.
 Bottom-water data and trace metal concentration of Cu, Cr, Ni, Pb, Co, Zn, and organic matter in surficial sediment samples from 13 sampling stations of Lake Chapala in Mexico were studied. The lake is turbid with a great amount of flocculated sediments as a result of wind mixing, sediment re-suspension, and Lerma River discharges. Al distribution pattern in sediments was used as an indicator of the Lerma River discharges into Lake Chapala. The highest values of Cu (33.27 ppm), Cr (81.94 ppm), Pb (99.8 ppm), and Zn (149.7 ppm) were detected in sediments near the lake outlet. The bioavailable metal fraction is low for all metals except Pb, which shows 65–93% of the total metal concentration in bioavailable form. The minimum energy zone in the lake was related to organic matter concentration and was located in the SE part of the lake. An analysis of the studied parameters shows two zones: eastern zone (fluvio-deltaic) and central-western zone (lacustrine). Received: 9 September 1998 · Accepted: 16 November 1998  相似文献   

11.
The presence of heavy metal concentrations was examined in natural sediments from four sites along the Jajrood river in northeast of Tehran, the capital of Iran. Besides determination of elemental concentrations (Pb, Cu, Zn, Cd, Ni and Cr), X-ray fluorescence and X-ray diffraction tests were carried out to determine other chemical components in these adsorbents. Also the ability of sediments to adsorb these heavy metal ions from aqueous solutions was investigated. Results show that the extent of adsorption increases with increase in adsorbent concentration. The amount of adsorbed Pb, Cu and Zn in sediments was much greater than that of the other metals, and Cr was adsorbed much less than others. The adsorbabilities of sediments to heavy metals increased in the order of Pb > Cu > Zn > Cd > Ni > Cr. Based on the adsorption data, equilibrium isotherms were determined at selected areas to characterize the adsorption process. The adsorption data followed Freundlich and Langmuir isotherms in most cases. Correlation and cluster analysis was performed on heavy metals adsorption and sediment components at each site to evaluate main adsorbing compounds in sediments for each metal. Results demonstrated that heavy metals sorption is mostly related to load of organic matter in the Jajrood river sediments.  相似文献   

12.
The concentrations of heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb) in 16 samples collected from the lower reach (Changsha–Xiangtan–Zhuzhou section) of the Xiangjiang River in southern China were determined by high-resolution inductively coupled plasma mass spectroscopy (HR-ICPMS). Multivariate analysis, such as principal component analysis and cluster analysis, coupled with correlation coefficient analysis, was used to analyze the analytical data and to identify possible pollution sources of heavy metals. The results showed that the eight studied heavy metals accumulated in the sediments from the lower Xiangjiang River, especially Mn, Cu, Zn, Pb and Cd, which were 2.0–2.6, 1.7–2.6, 3.5–3.8, 3.2–3.6 and 189.5–152.8 times the soil trace element background for Hunan Province and UCC background values, respectively. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, revealed that the sediments from lower Xiangjiang River were mainly influenced by two sources: Cr, Co, Ni, Cu, Zn, Cd and Pb mainly originated from industrial sources, whereas Mn was derived from both industrial and natural sources, but mainly from natural sources due to weathering and erosion.  相似文献   

13.
Heavy metal contamination and their distribution in different size fractions of the surficial sediment in Haihe River, China have been investigated. These results reveal that the heavy metal contamination of Haihe River is closely related to the contaminating sources along the river and has the order: Cd > Cu > Pb > Cr. The contents of these heavy metals in the sediment of Haihe River are at least two times higher than their background values and the highest contaminating metal, Cd, is 15.5 times higher than its background value and determined in the urban area of Tianjin city. The surficial sediments of Haihe River, with 70% particles smaller than 20 μm, belong to sandy clay containing about 28% clay and 42% silt. Electron micrographs and x-ray analysis show that the concentrations of heavy metals depend on the particle size of sediments. The highest concentrations for most metals exist in fine-grained sediments, which are mainly composed of silicates, oxides, and hydroxides of Si, Fe, and Al. In contrast, lower levels of heavy metals are usually found in the coarse sandy sediments, which are composed of quartz, feldspar, and other rocky substances. Based on the results in the present study of the surficial sediments of Haihe River, the contents of Cr, Cu, Pd, and Cd in finer sediments are 2.4, 3.9, 2.8, and 3.6 times higher than those in coarse sandy sediments, respectively. Obviously, because of rapid industrial development in this area during the last few decades, the surficial sediments of Haihe River, especially those finer fractions, have been seriously contaminated by heavy metals.  相似文献   

14.
 Extensive irrigation by the effluents released from a paper mill near Nanjangud have led to the accumulation of heavy metals in the soil and different parts of the paddy crops. In this paper, the physicochemical characteristics of paper mill effluents and the accumulation of heavy metals (Cu, Zn, Pb, Co, Cd, Cr, and Ni) in the soil and different parts (root, leaf, and seed) of the paddy crops growing in the irrigated area are described and compared with the soil and paddy crops irrigated by natural waters (unpolluted). Chemical and biological oxygen demands of wastewater were found to be 437 and 1070 ppm respectively, which are beyond the tolerance limits set by Indian standards. The total dissolved and suspended solids are 1754 and 900 ppm respectively. The concentration of heavy metals (except Zn) in the seeds is remarkably less than that in the roots and leaves of the paddy crops. The heavy metal uptake by plants shows the greatest accumulation of Cu, Cr, Co, and Pb in the roots; Cd and Ni in the leaves; and Zn in the seeds of rice. The heavy metal content of the soil and their total uptake by paddy roots has the relation: Pb>Zn>Cu>Cd and Pb>Cu>Zn>Cd. Survival of paddy crops irrigated by polluted waters indicates tolerance to toxic heavy metals. In conclusion, since in many tropical countries the common diet of people is rice, the accumulation of toxic heavy metals in rice may lead to health disorders. Received: 18 July 1995 / Accepted: 24 February 1997  相似文献   

15.
 The major (Al, Ti, Ca, Mg, Fe, Mn, Si) and trace element (Cd, Cr, Cu, Hg, Li, Ni, Pb, V, Zn) concentrations in surficial (<20 cm) sediments from fjords and open coastal waters around Greenland have been determined. Regionally, high concentrations of Fe, Ti, Mg, Cr, Cu, Ni, and V occur in some west and east coast sediments, but they appear to be natural in origin, as there is no indication of anthropogenic influence. Chemical partition indicates that most of the heavy metals are structurally bound in various silicate, oxide, and sulfide minerals. These host minerals occur more or less equally in the coarse and fine sediment fractions (material >63 μm and <63 μm) and have accumulated at the same rate as other detrital clastic material. Provenance and glaciomarine deposition are the main factors controlling the abundance and distribution of the major and trace elements. The chemical composition reflects the mineralogical differences in the provenance of glacial marine material deposited by water and ice adjacent to Greenland. The main source of the sediments enriched in Ti, Fe, Mg, Cr, Cu, Ni, and V appears to be material derived from the volcanic rocks of the Mesozoic-Tertiary Provinces of Greenland by glacial erosion. Received: 26 June 1995 · Accepted: 11 August 1995  相似文献   

16.
The 1000 km long Ok Tedi/Fly River system receives about 66 Mt/year of mining waste from the Ok Tedi copper-gold porphyry mine. Mine input has increased the suspended sediment load of the Middle Fly River about 5–10 times over the natural background. A significant yet unknown amount of copper-rich material deposits unevenly in the extensive tropical lowland floodplain. Recent alluvial sediments of the Fly River floodplain have copper contents of 620 mg/kg (±1σ: 430–900), whereas the regional background is 40 mg/kg (±σ: 25–60). This pattern is mirrored and enhanced by the gold dispersal pattern with a 7 ppb Au background versus a 140–275 ppb population in mine-derived material. Very high deposition rates (around 4 cm/y) of mine-derived sediment were determined in locations close to the creeks and channels which link the Fly River with the outer floodplain. A thin layer of 1–5 cm of copper-rich material (400–900 mg/kg Cu) was usually found on the bottom of drowned (tributary) valley lakes. Average dissolved copper content in waters of the inner floodplain is around 9 μg/l (±1σ: 5–14) as compared to unpolluted water from the outer floodplain with < 2 μg/l Cu. The present Fly River water, about 600 km downstream of the mine site, has concentrations of 17 ± 3 μg/l dissolved Cu. Received: 30 June 1996 / Accepted: 9 January 1997  相似文献   

17.
Tidal freshwater marshes exist at the interface between watersheds and estuaries, and thus may serve as critical buffers protecting estuaries from anthropogenic metal pollution. Bi-weekly samples of newly deposited marsh sediments were collected and analyzed for Cu, Zn, and Fe concentrations over 21 months from July 1995 to March 1997 in five distinct habitats at the head of Bush River, Maryland. Bi-weekly anthropogenic metal enrichments ranged from 0.9–4.7. Anthropogenic excess metal loadings averaged over 1996 ranged from 6–306 and 25–1302 μg cm−2 year−1 between sites for Cu and Zn, respectively. Based on Fe-normalized trace metal signatures, Susquehanna River sediment does not significantly contribute to upper Bush River. Organic matter was found to dilute total metal concentrations, whereas past studies suggested organics enhance labile metal content. Analysis of metal input pathways shows that marsh metals are primarily imported from nearby subtidal accumulations of historic watershed material by tidal flushing. Received: 29 April 1999 / Accepted: 7 December 1999  相似文献   

18.
The given work focused on solving the problem of environmental geochemistry related to investigation of element speciation, their mobility, and migration in polluted areas. The purpose was to describe quantitatively migration, distribution, and redistribution of heavy metals by the example of the old tailings (Talmovaya sands) of the Lead Zinc Concentration Plant (Salair, Kemerovo region, Russia) and technogenic bottom sediments of the Malaya Talmovaya river. Contents of elements in the sulfide tailings range in the following limits: Zn: 1,100–27,000 ppm, Cd: 1.3–240 ppm, Pb: 0.01–0.81 ppm, Cu: 220–960 ppm, As: 15–970 ppm, Fe: 19,000–76,000 ppm, and Ba: 80,000–1,00,000 ppm. Element concentrations in the river sediment are proportional to the element contents in the sulfide tailings. Element speciations in the sulfide tailings and technogenic bottom sediments were investigated by the modified sequential extraction procedure. Chemical forms of heavy metals in pore water and surface water were calculated by WATEQ4F software. Principles of heavy metal migration in the sulfide tailings and technogenic bottom deposits were established. The obtained results about element species in the sulfide tailings and sediment explain the main principles of element migration and redeposition. In the mine waste and technogenic bottom deposits, there is vertical substance transformation with formation of geochemical barriers.  相似文献   

19.
Experiments in the systems diopside-albite (Di-Ab) and diopside-albite-dolomite (Di-Ab-Dmt), doped with a wide range of trace elements, have been used to characterise the difference between clinopyroxene-silicate melt and clinopyroxene-carbonate melt partitioning. Experiments in Di-Ab-Dmt yielded clinopyroxene and olivine in equilibrium with CO2-saturated dolomitic carbonate melt at 3 GPa, 1375 °C. The experiments in Di-Ab were designed to bracket those conditions (3 GPa, 1640 °C and 0.8 GPa, 1375 °C), and so minimise the contribution of differential temperature and pressure to partitioning. Partition coefficients, determined by SIMS analysis of run products, differ markedly for some elements between Di-Ab and Di-Ab-Dmt systems. Notably, in the carbonate system clinopyroxene-melt partition coefficients for Si, Al, Ga, heavy REE, Ti and Zr are higher by factors of 5 to 200 than in the silicate system. Conversely, partition coefficients for Nb, light REE, alkali metals and alkaline earths show much less fractionation (<3). The observed differences compare quantitatively with experimental data on partitioning between immiscible carbonate and silicate melts, indicating that changes in melt chemistry provide the dominant control on variation in partition coefficients in this case. The importance of melt chemistry in controlling several aspects of element partitioning is discussed in light of the energetics of the partitioning process. The compositions of clinopyroxene and carbonate melt in our experiments closely match those of near-solidus melts and crystals in CMAS-CO2 at 3 GPa, suggesting that our partition coefficients have direct relevance to melting of carbonated mantle lherzolite. Melts so produced will be characterised by elevated incompatible trace element concentrations, due to the low degrees of melting involved, but marked depletions of Ti and Zr, and fractionated REE patterns. These are common features of natural carbonatites. The different behaviour of trace elements in carbonate and silicate systems will lead to contrasted styles of trace element metasomatism in the mantle. Received: 15 July 1999 / Accepted: 18 February 2000  相似文献   

20.
 Heavy rainfalls, between 25 and 100 mm·h–1, were simulated on Pliocene/Quaternary sediments. To reproduce the heterogeneity of natural environments, 231 small plots of various sizes (between 2.5 and 3.5 m2; mean: about 3 m2) were used. The duration of all simulations was 1 h. We used water that had been collected during natural rainfall. The concentration of clay particles in the sheet wash depended upon the concentration of dissolved sodium in the wash (for about 42%) and of the sheet wash quantity (for about 37%). Under natural water conditions colloidal matter, like clay minerals, is charged negatively and therefore is destabilized by metal cations such as in the case of Na+. Results suggest that relatively higher concentrations of montmorrillonite were related to higher concentrations of sodium as opposed to illite and kaolinite. Microflakes of up to 25 μ were observed to vary between face-to-edge and face-to-face modes (competition between protons and other cations). The concentration of dissolved sodium (Na+) in the runoff water depends on water and sodium balances such as atmospheric input, infiltration, evaporation and surface water runoff. The reduction of vegetation cover increases the amount of salt and amorphous matter in/on the topsoil between heavy rainfall generations. The best predictor to explain montmorillonite, illite and kaolinite in % of mineral clay-sized matter in the surface water runoff (sheet wash) is the percentage of each clay mineral in the topsoil. As opposed to illite and kaolinite, more sheet wash indicate for montmorillonite relatively higher concentrations in the wash. The results of model simulations were confirmed on different field plots of about 1 ha and small catchments during natural heavy rainfall events. Models can also be used to understand and to better simulate sheet, rill and gully erosion, micropedimentation; and pedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号