首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiaohu Wen  Meina Diao  De Wang  Meng Gao 《水文研究》2012,26(15):2322-2332
Groundwater salinization has become a crucial environmental problem worldwide and is considered the most widespread form of groundwater contamination in the coastal zone. In this study, a hydrochemical investigation was conducted in the eastern coastal shallow aquifer of Laizhou Bay to identify the hydrochemical characteristics and the salinity of groundwater using ionic ratios, deficit or excess of each ions, saturation indices and factor analysis. The results indicate that groundwater in the study area showed wide ranges and high standard deviations for most of hydrochemical parameters and can be classified into two hydrochemical facies, Ca2+‐Mg2+‐Cl facies and Na+‐Cl facies. The ionic ratio, deficit or excess of each ions and SI were applied to evaluate hydrochemical processes. The results obtained indicate that the salinization processes in the coastal zones were inverse cation exchange, dissolution of calcite and dolomite, and intensive agricultural practices. Factor analysis shows that three factors were determined (Factor 1: TDS, EC, Cl, Mg2+, Na+, K+, Ca2+ and SO42‐; Factor 2: HCO3 and pH; Factor 3: NO3 and pH), representing the signature of seawater intrusion in the coastal zone, weathering of water–soil/rock interaction, and nitrate contamination, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The groundwater of the Korba plain represents major water resources in Tunisia. The Plio‐Quaternary unconfined aquifer of the Cap‐Bon (north‐east Tunisia) is subject to the intensive agricultural activities and high groundwater pumping rates due to the increasing of the groundwater extraction. The degradation of the groundwater quality is characterized by the salinization phenomena. Groundwater were sampled and analysed for physic‐chemical parameters: Ca2+, Mg2+, Na+, K+, Cl, SO42‐, HCO3, NO3, pH, electrical conductivity (EC), and the temperature (T°). The hydrochemical analysis is coupled with the calculation of the saturation indexes (SI gypsum, SI halite, SI calcite and SI dolomite), ionic derivation and with the ion correlations compared to chloride concentrations: Na+/ Cl, Ca2+/ Cl and Mg2+/ Cl ratios. Seawater fractions in the groundwater were calculated using the chloride concentration. Those processes can be used as indicators of seawater intrusion progression. EC methods were also conducted to obtain new informations on the spatial scales and dynamics of the fresh water–seawater interface of coastal groundwater exchange. The mixing zone between freshwater and saltwater was clearly observed from the EC profile in the investigated area where a strong increase in EC with depth was observed, corresponding to the freshwater and saltwater interface. Results of hydrochemical study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with cations exchange. These results, together with EC investigation, indicated that the groundwater is affected by seawater intrusion and is still major actor as a source of salinization of the groundwater in Korba coastal plain. Further isotopic and hydrological investigations will be necessary to identify and more understood the underlying mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The use of reclaimed water and its impact on groundwater quality in the middle and southern parts of the Jordan Valley are investigated. The chemical analyses indicate that nitrate and bacteriological pollution is widespread, and thus, seriously affects groundwater use. During the study, 365 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. Three hydrochemical facies are identifed, i. e., (Ca–(Mg)–Na–HCO3), (Ca–Na–SO4–Cl) and (Ca–Na–Cl). The change of facies is accompanied by a gradual increase in the groundwater total dissolved solids (TDS), which is mainly controlled by evaporates and carbonates dissolution in the aquifer matrix. Water analyses indicate that the shallow aquifer in the study area is affected by non‐point pollution sources, primarily from natural (manure) and chemical nitrogen (N)‐fertilizers and treated wastewater used for agriculture. The concentration of nitrate in the groundwater ranges from 10 to 355 mg/L. Considerable seasonal fluctuations in groundwater quality are observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Zarqa River flow. The noticeable levels of total coliform and Escherichia coli in the northern part of the study area may be attributed to contamination from the urban areas, intensive livestock production, and illegal dumping of sewage. Heavy metal concentrations in all samples were found to be significantly lower than the permissible limits for drinking water standards.  相似文献   

4.
Study Area is located in the southwestern part of Bangalore South Taluk, Bangalore district, Karnataka state between 12°48??24.52?? to 12°53??59.85?? North latitude and 77°24??59.95?? to 77°30??6.72?? East Longitude. The major hydro-chemical facies that predominates in the study area is Ca2+-Mg2+-HCO 3 ? type during both pre- and post-monsoon seasons of the year 2007, could be as a result of dissolution of carbonate minerals like calcite and dolomite prevailing in the study area. However, cation-exchange processes could be responsible for the formation of the Ca2+-Mg2+-Cl?-SO 4 2? water type (??32%) from the CaSO4, MgCO3 and NaCl type that are formed due to the dissolution of anhydrite, gypsum, magnesite and halite. Besides, suitability of water for irrigation is evaluated based on sodium adsorption ratio, residual sodium carbonate, sodium percent, salinity hazard and USSL diagram. Hydrogeochemical speciation model calculations carried out using WATEQ4F program showed similar seasonal variation in the concentration of saturation indices of specific mineral phases, majority of the samples kinetically saturated with carbonate minerals (viz., aragonite, calcite and dolomite) indicating the influence of carbonate mineral phases on the chemistry of groundwater. On one hand, the samples were significantly oversaturated with Florapatite while on the other, they were undersaturated with respect to with anhydrite, gypsum and fluorite with halite being highly undersaturated. The Gibbs plots also gave an indication that there exists an interaction between rock and the percolating water into the subsurface by means of mineral dissolution. Factor analysis determined two factors mainly responsible for water quality during pre- and post-monsoon seasons, accounting to 52.84% and 51.09% of total variance respectively. Q-mode HCA Cluster analysis grouped the sampling stations into three clusters based on the similarity of water quality while R-mode HCA grouped analyzed parameters into two groups based on the effects of factors in the hydrochemistry.  相似文献   

5.
Stable isotopic (δDVSMOW and δ18OVSMOW) and geochemical signatures were employed to constrain the geochemical evolution and sources of groundwater recharge in the arid Shule River Basin, Northwestern China, where extensive groundwater extraction occurs for agricultural and domestic supply. Springs in the mountain front of the Qilian Mountains, the Yumen‐Tashi groundwater (YTG), and the Guazhou groundwater (GZG) were Ca‐HCO3, Ca‐Mg‐HCO3‐SO4 and Na‐Mg‐SO4‐Cl type waters, respectively. Total dissolved solids (TDS) and major ion (Mg2+, Na+, Ca2+, K+, SO42?, Cl? and NO3?) concentrations of groundwater gradually increase from the mountain front to the lower reaches of the Guazhou Basin. Geochemical evolution in groundwater was possibly due to a combination of mineral dissolution, mixing processes and evapotranspiration along groundwater flow paths. The isotopic and geochemical variations in melt water, springs, river water, YTG and GZG, together with the end‐member mixing analysis (EMMA) indicate that the springs in the mountain front mainly originate from precipitation, the infiltration of melt water and river in the upper reaches; the lateral groundwater from the mountain front and river water in the middle reaches are probably effective recharge sources for the YTG, while contribution of precipitation to YTG is extremely limited; the GZG is mainly recharged by lateral groundwater flow from the Yumen‐Tashi Basin and irrigation return flow. The general characteristics of groundwater in the Shule River Basin have been initially identified, and the results should facilitate integrated management of groundwater and surface water resources in the study area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
旅游酒店排污影响下的岩溶地下水水化学变化   总被引:2,自引:1,他引:1  
岩溶地下水系统具有高度的开放性和脆弱性,使得地下水极易遭受污染.为探究旅游酒店排污对岩溶地下水水化学变化的影响,以金佛山世界自然遗产地水房泉流域为例,对水房泉地下水的水化学进行自动化监测,对流域内雨水、土壤水、某酒店自来水、污废水进行定期采集,结合流域硝酸盐氮氧同位素分析.结果表明,监测期间水房泉水化学变化随酒店入住游客量总体表现为3个阶段:前期受降雨影响显著,旅游高峰期间水质急剧恶化,后期水质明显好转.酒店生活污废水的排放成为水房泉水化学演变的重要因素,硝酸盐氮氧同位素表明水房泉的NO3-主要来自粪便、污废水以及土壤N的混合.H2SO4及污水中HCl、有机酸等可能参与了碳酸盐岩的溶蚀,使水房泉Ca2+、Mg2+、HCO3-浓度增加明显.流域岩溶管道发育,地下水流速快,使污染物质扩散迅速,故在研究期间水房泉主要离子的浓度高峰对污废水排放高峰的响应仅滞后约4 d.  相似文献   

7.
Abstract

On the basis of the degree of mineralization, the groundwater of Apan-Tochac sub-basin may be considered as fresh (TDS < 500 ppm). However, chlorination is necessary to make it fit for human consumption. Major ion analyses of over 235 water samples reveal a striking relationship between hydrochemical evolution and the groundwater flow system. A high content of total dissolved solids, and low values of the Ca:Mg ratio are present in wells located on the plain (discharge zone), whereas opposite conditions are associated with wells located in higher regions (recharge zone). Statistical data analysis using the method of principal components allowed to differentiation of two hydrochemical families: (a) low mineralization corresponding to the recharge zone, and (b) high mineralization corresponding to the discharge zone. Waters of the Ca + Mg + HCO3, and Na + Mg + HCO3 hydrochemical fades are present and the former is dominant. The water is slightly alkaline, having slight problems of salinity during the year owing mainly to Ca2+HCO3 ? and Na+Cl? salts. The hydrochemistry of the groundwater reflects the pattern of local groundwater flow for this sub-basin.  相似文献   

8.
We applied graphical methods and multivariate statistics to understand impacts of an unsewered slum catchment on nutrients and hydrochemistry of groundwater in Kampala, Uganda. Data were collected from 56 springs (groundwater), 22 surface water sites and 13 rain samples. Groundwater was acidic and dominated by Na, Cl and NO3. These ions were strongly correlated, indicating pollution originating from wastewater infiltration from on‐site sanitation systems. Results also showed that rain, which was acidic, impacted on groundwater chemistry. Using Q‐mode hierarchical cluster analysis, we identified three distinct water quality groups. The first group had springs dominated by Ca‐Cl‐NO3, low values of electrical conductivity (EC), pH and cations, and relatively high NO3 values. These springs were shown to have originated from the acidic rains because their chemistry closely corresponded to ion concentrations that would occur from rainfall recharge, which was around 3.3 times concentrated by evaporation. The second group had springs dominated by Na‐K‐Cl‐NO3 and Ca‐Cl‐NO3, low pH but with higher values of EC, NO3 and cations. We interpreted these as groundwater affected by both acid rain and infiltration of wastewater from urban areas. The third group had the highest EC values (average of 688 μS/cm), low pH and very high concentrations of NO3 (average of 2.15 mmol/l) and cations. Since these springs were all located in slum areas, we interpreted them as groundwater affected by infiltration of wastewater from poorly sanitized slums areas. Surface water was slightly reducing and eutrophic because of wastewater effluents, but the contribution of groundwater to nutrients in surface water was minimal because o‐PO4 was absent, whereas NO3 was lost by denitification. Our findings suggest that groundwater chemistry in the catchment is strongly influenced by anthropogenic inputs derived from nitrogen‐containing rains and domestic wastewater. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Badab Sourt travertine‐depositing springs in the north of Iran, naturally create a unique surreal landscape containing a range of stepped travertine terraces, similarly found only in a few other places on earth. This site comprises of three travertine saline springs with different values of salinity and discharge (SP1, SP2, and SP3) and one non‐travertine fresh karstic spring (SP4) within a distance of about 300 m. The etiology behind this salinity and the water origin are the main research's dilemma that were investigated using geological, hydrochemical, and stable isotopic techniques. Based on the topography and isotopic results, the carbonate formations in northern (Khoshyeilagh and Mobarak) and southern (Cretaceous limestone) parts of the springs potentially provide the initial hydraulic gradient for deep circulation of the water and CO2. However, geological studies indicate that the hydraulic connectivity of the Cretaceous formation to the travertine springs is interrupted by impermeable geological formations. Based on the proposed conceptual hydrogeological model and mass balance calculations, the SP4 spring is locally recharged from the nearby karstic area of Khoshyeilagh formation through shallow, short and steep groundwater flow circulation that is completely different from the travertine springs. The travertine spring (SP1) is recharged from more distant areas having higher altitudes on Mobarak and Khoshyeilagh limestone and circulate more deeply before emerging on the surface. The SP2 and SP3 springs can derive from the mixing of the saline water (SP1) and fresh water (SP4). The dissolution of interlayers of halite in Shemshak formation is concluded as the main source of salinity. This is the first research article in detail to survey hydrogeology of the travertine springs in Iran.  相似文献   

10.
11.
Comprehensive studies on the spatial distribution, water quality, recharge source, and hydrochemical evolution of regional groundwater form the foundation of rational utilization of groundwater resources. In this study, we investigated the water levels, hydrochemistry, and stable isotope composition of groundwater in the vicinity of the Qinghai Lake in China to reveal its recharge sources, hydrochemical evolution, and water quality. The level of groundwater relative to the level of water in the Qinghai Lake ranged from −1.27 to 122.91 m, indicating most of the groundwater to be flowing into the lake. The local evaporation line (LEL) of groundwater was simulated as δ2H = 6.08 δ18O-3.01. The groundwater surrounding the Qinghai Lake was primarily recharged through local precipitation at different altitudes. The hydrochemical type of most of the groundwater samples was Ca-Mg-HCO3; the hydrochemistry was primarily controlled by carbonate dissolution during runoff. At several locations, the ionic concentrations in groundwater exceeded the current drinking water standards making it unsuitable for drinking. The main source of nitrate in groundwater surrounding the Qinghai Lake was animal feces and sewage, suggesting that groundwater pollution should be mitigated in areas practicing animal husbandry in the Qinghai-Tibet Plateau, regardless of industrial and urbanization rates being relatively low in the region. The scientific planning, engineering, and management of livestock manure and wastewater discharge from animal husbandry practices is a crucial and is urgently required in the Tibetan Plateau.  相似文献   

12.
The study aims to measure the hydrological behavior and nutrients dynamics of the springs located in different landscapes of Kosi basin, Indian central Himalaya. A total number of eight springs were considered for the present investigation, each landscape represented by one spring. The monitoring for hydrological measurement was conducted in January 1998 to December 1999, the interval between two successive measurements was 10 days, i.e., 240 hr (total 72 observations were made). Water quality measurement was done in three main seasons, i.e., winter (Jan.), summer (June) and monsoon (Aug.) of 1998 and 1999, and the average value for measured parameters were calculated. These samples were analyzed for pH, electrical conductivity, total dissolved solids, dissolve oxygen, Ca2?, Mg2?, Na?, Cl?, F?, NO 3 ? , and SO 4 2? . Hydrology of spring’s water showed that the reserve forest has a higher water retention capacity than the other landscapes, and the spring recharge capacity highly influenced by the settlements, open grazing, mismanaged agricultural and deforestation activities. The spring water chemistry shows that the springs located in forest and sparsely populated areas have lower EC, TDS, cationic and anionic concentration and are safe for drinking purposes, but those in irrigated land and densely populated areas feature higher EC, low dissolved oxygen concentration and higher NO 3 ? , which makes the water of these springs unsuitable for drinking. F concentration was higher in the springs located in the settlement area. In brief, the study indicates that the unmanaged drains, very poor and old pattern of sewage disposing system result in an increase in Na?, Cl?, F?, NO 3 ? , and SO 4 2? concentration as compared to the springs in agricultural and forested areas. All of the studied springs are badly managed which a is great threat for the longevity and quality of the water bodies, in particular, in Indian Central Himalayan region. This study suggests the ways of the constructional works, grazing. Forest resource extraction and agricultural activities in water bodies catchments area should also be controlled.  相似文献   

13.
Groundwater quality in Ma’an area was evaluated for its suitability for drinking and agricultural uses by determining the main physical and chemical properties during a 1 year survey study (August 2009 to August 2010). Several samples were collected from ten different wells and analysed for temperature, pH, conductivity, total dissolved solids, total hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 ?, Cl?, NO3 ?, SO4 2?, F? and Br?) and trace metals (Fe2+, Al3+, Mn2+, Cu2+, Zn2+, Pb2+ and Cd2+). The general chemistry of water samples was typically of alkaline earth waters with prevailing bicarbonate chloride. The results showed great variations among the analyzed samples with respect to their physical and chemical parameters. However, most values were below the maximum permissible levels recommended by Jordanian and WHO drinking water standards. The quality assessment shows that in general, the GW in the study area is not entirely fit for direct drinking with respect to EC, and Pb2+. According to the residual sodium carbonate and sodium adsorption ratio, the water in the studied wells can be used for irrigational purposes.  相似文献   

14.
The influence of geochemical processes and quality of groundwater in a rural tract of Damodar Valley region were investigated. The study has distinguished the groundwater as fresh, soft to moderately hard and mainly CaHCO3 type. The paired samples student’s t test shows the significant seasonal variations of pH, HCO3?, and Fe. Amphoteric exchange has lessened HCO3? concentration in post-monsoon which subsequently has caused to drop pH. Quite the reverse, the monsoon precipitation has triggered the additional release of Fe from iron-bearing sediments. The contaminant Cl? is from the domestic wastewater as is evidenced by field observations. The inter-variable relations, cation and anion mechanisms, and mineral saturation indices reveal that the dissolutions of silicate and carbonate minerals are the primary sources of major ions in groundwater. The chloro-alkaline indices showed the role of ion exchange too in water chemistry. The R-mode factor analysis also successfully identified two dominant processes regulating water chemistry—geogenic sources (Ca2+, Mg2+, Na+, and HCO3?) and anthropogenic inputs (mainly Cl?). The groundwater is found unsuitable for drinking at 82 and 93% of wells in pre- and post-monsoon seasons, respectively mainly due to elevated Fe content. The water from more than 90% of wells is appropriate for irrigation uses. The study recommends the proper treatment of contaminated water for consumption and measures to protect the groundwater from the waste water infiltration.  相似文献   

15.
Clay aquitards are semipermeable membranes that allow groundwater flow while retarding solute migration has been researched extensively but also subjected to much debate. At present, there is no evidence of whether the physical and chemical properties of clay soil and the isotopic composition of pore water affect the semipermeable membrane effect. In this study, we collected clay samples from drilling cores (30–90 m) in the Hengshui area located in the North China Plain (NCP), then extracted pore water using a high-pressure squeezing device. Vertical hydrochemical and isotopic profile variation trends for the pore water were revealed using hydrochemical (Cl, Na+, Ca2+, K+, Mg2+, and SO42−) and stable isotopic measurements of H, O and Cl. The results showed that the hydrochemical clay interlayer pore water of the saline aquifer is Cl/SO4-Na/Mg type and the average total dissolved solids (TDS) are 10.17 g/L. However, the hydrochemical clay aquitard pore water is of the Cl/SO4-Na/Ca type with an average TDS of 1.90 g/L. The hydrochemical clay interlayer pore water of aquifer II is of Cl-Na/Ca type with an average TDS of 1.10 g/L. Our results showed that the water quality of the aquifer II is not affected by the upper part of the saline aquifer, thus the clay aquitard acts as a significant barrier to salt movement. A polarization layer concentrated in ions was formed between the upper part of the saline aquifer and the clay aquitard. The concentration polarization layer increases the salt-inhibition effect. H, O and Cl isotopic composition results showed significant fractionation. The pore water of aquifer II lacked heavy isotopes (2H, 18O, 37Cl), but had significant heavy isotope enrichment in the concentrated polarized layer (the δ2H value was −76‰, the δ18O value was −8.4‰, and the δ37Cl value was 1.59‰). Hyperfiltration thus played a significant role in isotope fractionation.  相似文献   

16.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A typical area, Gaomi City in China, was chosen to discuss the enrichment process of groundwater fluorine in sea water intrusion area. The groundwater had fluorine levels of 0.09–10.99 mg/L, with an average concentration of 1.38 mg/L. The high-fluorine groundwater was mainly distributed in the unconsolidated Quaternary sediments, where concentrations in 83.6% of the samples exceeded the national limit of 1.0 mg/L. The groundwater in the Quaternary sediments also had higher levels of Cl, TDS, Mg2+, and pH and lower levels of Ca2+, Co, Ni, and Cu than that in the bedrock. The groundwater fluorine levels in the Quaternary sediments are positively correlated with Cl, TDS, Mg2+, pH, and negatively correlated with Ca2+, γCa2+/γMg2+, Co, Ni, Cu. Geochemical indices of Cl and TDS indicate sea water intrusion in the Quaternary high-fluorine groundwater area (F > 1.0 mg/L), while they do not indicate any intrusion in the bedrock area. The chemical weathering of minerals was intensified with the intrusion of sea water. Cation exchange was confirmed to occur in the Quaternary sediments and was promoted by sea water intrusion. Cation exchange consumes part of groundwater Ca2+ and permits more F dissolving. Consequently, in the Quaternary sediments, the groundwater was supersaturated with CaF2 minerals and undersaturated with MgF2 minerals when F > 1.0 mg/L, while CaF2 and MgF2 minerals both are undersaturated when F < 1.0 mg/L. Thus, the chemical weathering of minerals and cation exchange caused by sea water intrusion are the crucial processes controlling the groundwater fluorine levels, which should be considered when the groundwater fluorine enrichment mechanism is discussed along coastal zones.  相似文献   

18.
Mountainous headwaters consist of different landscape units including forests, meadows and wetlands. In these headwaters it is unclear which landscape units contribute what percentage to baseflow. In this study, we analysed spatiotemporal differences in baseflow isotope and hydrochemistry to identify catchment‐scale runoff contribution. Three baseflow snapshot sampling campaigns were performed in the Swiss pre‐alpine headwater catchment of the Zwäckentobel (4.25 km2) and six of its adjacent subcatchments. The spatial and temporal variability of δ2H, Ca, DOC, AT, pH, SO4, Mg and H4SiO4 of streamflow, groundwater and spring water samples was analysed and related to catchment area and wetland percentage using bivariate and multivariate methods. Our study found that in the six subcatchments, with variable arrangements of landscape units, the inter‐ and intra catchment variability of isotopic and hydrochemical compositions was small and generally not significant. Stream samples were distinctly different from shallow groundwater. An upper spring zone located near the water divide above 1,400 m and a larger wetland were identified by their distinct spatial isotopic and hydrochemical composition. The upstream wetland percentage was not correlated to the hydrochemical streamflow composition, suggesting that wetlands were less connected and act as passive features with a negligible contribution to baseflow runoff. The isotopic and hydrochemical composition of baseflow changed slightly from the upper spring zone towards the subcatchment outlets and corresponded to the signature of deep groundwater. Our results confirm the need and benefits of spatially distributed snapshot sampling to derive process understanding of heterogeneous headwaters during baseflow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号