首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An improved understanding of postseismic crustal deformation following large subduction earthquakes may help to better understand the rheological properties of upper mantle and the slip behavior of subduction interface. Here we construct a three-dimensional viscoelastic finite element model to study the postseismic deformation of the 2014 MW8.1 Iquique, Chile earthquake. Elastic units in the model include the subducting slab, continental and oceanic lithospheres. Rheological units include the mantle wedge, the oceanic asthenosphere and upper mantle. We use a 2 ​km thick weak shear zone attached to the subduction fault to simulate the time-dependent stress-driven afterslip. The viscoelastic relaxation in the rheological units is represented by the Burgers rheology. We carry out grid-searches on the shear zone viscosity, thickness and viscosity of the asthenosphere, and they are determined to be 1017 ​Pa ​s, 110 ​km and 2 ​× ​1018 ​Pa ​s, respectively. The stress-driven afterlsip within the first two years is up to ~47 ​cm and becomes negligible after two years (no more than 5 ​cm/yr). Our results suggest that a thin, low-viscosity oceanic asthenosphere together with a weak shear zone attached to the fault are required to better reproduce the observed postseismic deformation.  相似文献   

2.
Due to its location on a transtensional section of the Pacific-North American plate boundary, the Salton Trough is a region featuring large strike-slip earthquakes within a regime of shallow asthenosphere, high heat flow, and complex faulting, and so postseismic deformation there may feature enhanced viscoelastic relaxation and afterslip that is particularly detectable at the surface. The 2010 \(M = 7.2\) El Mayor-Cucapah earthquake was the largest shock in the Salton Trough since 1892 and occurred close to the US-Mexico border, and so the postseismic deformation recorded by the continuous GPS network of southern California provides an opportunity to study the rheology of this region. Three-year postseismic transients extracted from GPS displacement time-series show four key features: (1) 1–2 cm of cumulative uplift in the Imperial Valley and \(\sim\)1 cm of subsidence in the Peninsular Ranges, (2) relatively large cumulative horizontal displacements \(>\)150 km from the rupture in the Peninsular Ranges, (3) rapidly decaying horizontal displacement rates in the first few months after the earthquake in the Imperial Valley, and (4) sustained horizontal velocities, following the rapid early motions, that were still visibly ongoing 3 years after the earthquake. Kinematic inversions show that the cumulative 3-year postseismic displacement field can be well fit by afterslip on and below the coseismic rupture, though these solutions require afterslip with a total moment equivalent to at least a \(M = 7.2\) earthquake and higher slip magnitudes than those predicted by coseismic stress changes. Forward modeling shows that stress-driven afterslip and viscoelastic relaxation in various configurations within the lithosphere can reproduce the early and later horizontal velocities in the Imperial Valley, while Newtonian viscoelastic relaxation in the asthenosphere can reproduce the uplift in the Imperial Valley and the subsidence and large westward displacements in the Peninsular Ranges. We present two forward models of dynamically coupled deformation mechanisms that fit the postseismic transient well: a model combining afterslip in the lower crust, Newtonian viscoelastic relaxation in a localized zone in the lower crust beneath areas of high heat flow and geothermal activity, and Newtonian viscoelastic relaxation in the asthenosphere; and a second model that replaces the afterslip in the first model with viscoelastic relaxation with a stress-dependent viscosity in the mantle. The rheology of this high-heat-flow, high-strain-rate region may incorporate elements of both these models and may well be more complex than either of them.  相似文献   

3.
2010年4月14日青海玉树MS7.1地震发生在青藏高原东南部甘孜-玉树地震带,在震后7~10天内,我们快速建立了由15个GPS测站组成的跨地震破裂带观测剖面,包括1个连续站,3个半连续站和11个流动站,对所有站进行了240多天的观测,获取了该次地震的震后形变时空特征.采用欧拉矢量和位错模型解算了背景速度场,并从GPS观测的形变场中扣除该分量.采用分层黏弹性位错模型计算余震引起的地表形变,结果表明余震对部分测站的位移造成不可忽视的影响.采用对数模型拟合位移时间序列,表明特征衰减时间为6.7±1.2天.利用最速下降法反演震后余滑时空分布,反演结果表明震后断层活动以左旋滑动为主,断层南盘具有少量的抬升.在空间分布上,余滑主要位于同震破裂区的两侧,西北侧的余滑几乎达到地表,而东南区的余滑基本在同震破裂区的下方,余滑最大的区域位于结古镇东南下方10~20 km的深度范围.随着震后离逝时间的增加,2个余滑区在空间上保持不变,余滑区的面积逐渐扩大.余滑的矩释放为(1.5~5.1)×1018Nm,相当于1个MW6.1~6.4地震释放的能量.分层岩石圈黏弹性模型计算的地壳孔隙弹性反弹形变与地表观测值相差较大,不能解释观测到的震后变形.采用麦克斯维尔流变体模型计算下地壳和上地幔松弛引起的地表形变,显示出其对地表形变的贡献较小.GPS观测得到的震后形变所具有的快速衰减特征,以及余滑模型能够较好地拟合GPS地表形变,表明2010年玉树MS7.1地震后早期阶段的地壳形变主要是由余滑机制决定的.  相似文献   

4.
2008年3月21日新疆于田发生Ms7.3级地震.本文通过处理、分析GPS数据,得到破裂断层北侧100 km附近的同震位移及震后形变信息.在观测区域GPS点监测到10 mm左右的同震位移,其中最大为南向14 mm,东向5 mm.同震位移呈现一致性的东南向运动特征,证实于田地震存在显著的左旋走滑分量.震后台站向西南方向运...  相似文献   

5.
The mechanism of postseismic deformation related to strong earthquakes is important in geodynamics, and presumably afterslip or viscoelastic relaxation is responsible for the postsesimic deformation. The 1999 Chi-Chi, Taiwan of China, earthquake occurred in the region where GPS observation station is most densely deployed in the world. The unprecedented GPS data provides a unique opportunity to study the physical processes of postseismic deformation. Here we assume that the interactions of viscoelastic relaxation, afterslip, fault zone collapse, poroelastic rebound, flow of underground fluids, and all these combined contribute to the surface displacements following the main shock. In order to know the essence of the postseismic deformation after the strong event, fault zone collapse, poroelastic rebound, flow of underground fluids, and so on, are represented equivalently by the variations of the focal medium properties. Therefore, the viscoelastic relaxation, afterslip, and the variations of the equivalent focal medium properties are inverted by applying the GPS temporal series measurement data with viscoelastic finite element method. Both the afterslip rate distribution along the fault and the afterslip evolution with time are obtained by means of inversion. Also, the preliminary result suggests that viscosities of the lower crust and the upper mantle in Taiwan region is 2.7×1018 and 4.2×1020 Pa·s, respectively. Moreover, the inversion results indicate that the afterslip contributing to postseismic deformation of 44.6% in 450 days after the Chi-Chi earthquake, with 34.7% caused by the viscous relaxation and 20.7% by other factors such as fault zone collapse, poroelastic rebound, and the flow of liquids.  相似文献   

6.
郝明  沈正康  王庆良 《地震学报》2010,32(5):557-569
根据1990年青海共和地震震后地表垂直形变,通过模型拟合得到了支配共和地区震后形变场时空演化的形变源及其力学机制.分析穿过断层的震前1期和震后6期水准数据,结果表明震后垂直形变具有以下特征:①震后震区上盘继续发生继承性的大幅度上升,其中震后头一年上升速率最大;②震后上升区范围显著,范围随时间变化不大,但较同震形变上升区范围增大;③震后相邻测站高差观测值的时间序列明显具有对数衰减特征或指数衰减特征,衰减特征时间分别为0.165年和1.344年.本文还发展了一个利用水准数据与连续介质位错模型研究震后形变机制的新方法.该方法用相邻水准点之间的原始高差观测值而非它们相对参照点的积分值来约束连续介质位错模型,可以有效减少误差累积带来的偏差并充分利用观测数据.利用这一方法的初步分析结果表明,断层震后滑移和介质黏弹性松弛共同导致了共和地震震后形变.前者表现为发生在断层面及其延伸部分的滑移,特别是位于主破裂上方沉积层内的滑移;后者则表现为下地壳与上地幔内的黏弹性松弛,黏滞系数为1020Pa.s量级.  相似文献   

7.
1999年台湾集集地震震后450天的GPS观测资料显示了几十到几百毫米的地表位移.下地壳的震后黏性松弛和断层无震蠕变产生的震后滑动是用来解释地表震后变形的两个主要机制.本文利用接触问题的黏弹性有限元(LDDA)方法,以GPS观测数据作为约束,分别考察了黏性松弛和震后滑动机制对地表震后变形的影响.计算结果表明,黏性松弛机制产生的地表位移与观测数据吻合较好,通过试错法由震后GPS观测约束得到的下地壳黏度为1017Pa·s,而上地幔黏度对计算结果影响不大.考察震后滑动机制对地表变形的影响时,在LDDA方法中结合了速率状态摩擦定律,结果显示震后滑动机制不能很好地解释震后450天的观测数据,它产生的地表变形只在震后50天内与观测大致吻合,之后位移值基本不随时间变化.这些结果有助于增进对集集地震震后变形机制的认识.  相似文献   

8.
A three-layer elastic-gravitational fault displacement model using dislocation theory has been developed and used to examine the effect of layering of earth elastic moduli on surface and subsurface displacement fields for a vertical strike-slip fault. The model has been used to examine the effect of depth variation of elastic properties at coseismic and postseismic time scales. For pure strike-slip motion the effect of gravity on coseismic and postseismic horizontal deformation is negligible. For coseismic deformation the model predicts that (for constant Poisson's ratio) an increase in elastic moduli with depth attenuates the displacements within the upper layers with respect to displacement distribution for a uniform half-space, while an inclusion of a soft layer between the top layer and lower half-space amplifies upper layer displacements. The effect of variation in Poisson's ratio on surface and subsurface displacements has also been examined.The effect of postseismic stress relaxation on surface and subsurface displacements for a three-layer model has been calculated and compared with that of a uniformly relaxed half-space model. Layer 1 is assumed to correspond to the upper crust, layer 2 the lower crust and layer 3 the upper mantle. The effect of postseismic stress relaxation within a uniform half-space and within just the lower crust and upper mantle has been examined. Stress relaxation within the whole half-space decreases the amplitude and shortens the wavelength of displacements, while stress relaxation within the lower two layers increases the amplitude and broadens the wavelength of displacements. The difference between uniform and layered postseismic relaxation is particularly pronounced at the base of the crust.Coseismic and postseismic normal and volumetric strains for a vertical strike-slip fault have also been examined. For a uniformly relaxed half-space model, an increase in normal strains is shown with respect to the coseismic elastic solution, whereas the postseismic volumetric strain is effectively zero. For a three-layer model with stress relaxation in the lower layers only, the normal and volumetric strains within the top elastic layer resemble coseismic strains, while in the lower layers which suffer a rigidity decrease, the postseismic volumetric strain is effectively zero.  相似文献   

9.
Significant postseismic deformation of the 2008 M W 7.9 Wenchuan earthquake has been observed from GPS data of the first 14 days after the earthquake. The possible mechanisms for the rapid postseismic deformation are assumed to be afterslip on the earthquake rupture plane and viscoelastic relaxation of coseismiclly stress change in the lower crust or upper mantle. We firstly use the constrained least squares method to find an afterslip model which can fit the GPS data best. The afterslip model can explain n...  相似文献   

10.
2010年智利马乌莱MW8.8地震发生在纳斯卡板块与南美板块的板块边界处,引起了显著的同震和震后效应.GPS台网数据显示记录到的同震海向位移最大约5 m,垂向沉降最大约50 cm.在经过对俯冲效应、季节变化等效应的校正后,震后6年的海向最大位移约68 cm,垂向抬升最大约20 cm.马乌莱地震显著的震后形变对该区域的地...  相似文献   

11.
Continuous measurements at the Kuril GPS network since 2006 have revealed anomalous coseismic and postseismic displacements of the Earth’s crust, which accompanied the great 2006–2007 earthquake doublet in the central Kuriles and were observed during 2.5 years after the events. Prior to the earthquakes, all observation sites of the Kuril network were moving towards the continent due to the subduction deformation of the continental margin. After the events, the direction of displacement had changed to the opposite direction at the stations located on the Matua, Ketoy, and Kharimkotan Islands, which were the nearest to the seismic events, and experienced a significant turn on the Urup Island nearby. Modeling of postseismic viscoelastic relaxation of strains in the asthenosphere suggested an acceptable explanation for the long-term anomalous offsets revealed. By solving the corresponding inverse problems, we estimated the viscosity of the upper mantle and constrained the slip distribution of the 2006 Simushir earthquake.  相似文献   

12.
1976年唐山地震震时和震后变形的模拟   总被引:16,自引:1,他引:16       下载免费PDF全文
本文采用三维粘弹性有限元方法拟合唐山地区1976-1985年观测到的地震震时和震后的水平与垂直地形变,反演华北板块下方深部物质的流变学性质.模型采用多层弹性覆盖层与线性粘弹性层的有限块体,发展断层面上存在着位错运动,并用正交设计法拟合观测数据.模拟计算表明,华北板块下方软流层粘度为7.1×1018Pa·s;上地幔粘度为2.1×1019Pa·s.  相似文献   

13.
Relaxation of the coseismic stresses following an earthquake causes postseismic crustal deformation, which can last for days to years. Continuous monitoring of postseismic deformation facilitates the understanding of the mechanism of deformation and postseismic relaxation and viscous rheology. After the October 8, 2005 Kashmir earthquake, global positioning system data for 8 months, starting from October, 2005 have been analyzed from three continuous sites located at Gulmarg, Amritsar, and Jaipur. The average velocity during the observation period at Gulmarg (8.6 cm/year) is significantly higher than the Indian plate velocity exhibiting postseismic crustal deformation. The velocity at Amritsar (5.9 cm/year) and Jaipur (5.1 cm/year) is comparable to the Indian plate velocity. At Gulmarg, the logarithmic function fits well to the north–south component of postseismic transients (~in the coseismic slip direction). The nature of decay in these transients suggests that the deformation is mainly due to an afterslip, and the second possible contribution may be from the viscous relaxation process. This paper presents the characteristics of postseismic transients and possible contributions from various postseismic mechanisms subsequent to the Kashmir earthquake.  相似文献   

14.
The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada’s coseismic surface displacement solution caused by a uniform fault slip in an elastic homogeneous half space, we derived its postseismic surface displacement by using a single-layer standard linear solid model, and further derived a simplified formula for determining the effective relaxation time and viscosity of the earth, which is independent of the dislocation parameters of the causative fault. From the postseismic vertical deformation of the 1990 Gonghe earthquake, we inferred that the effective relaxation time defined by τ=η/μ is 2.6 years, and the effective viscosity η is about 1018 Pa · s. This work was supported by Chinese Joint Seismological Science Foundation under the grants 92088 and 196098.  相似文献   

15.
We use preseismic, coseismic, and postseismic GPS data of the 1999 Chi-Chi earthquake to infer spatio-temporal variation of fault slip and frictional behavior on the Chelungpu fault. The geodetic data shows that coseismic slip during the Chi-Chi earthquake occurred within a patch that was locked in the period preceding the earthquake, and that afterslip occurred dominantly downdip from the ruptured area. To first-order, the observed pattern and the temporal evolution of afterslip is consistent with models of the seismic cycle based on rate-and-state friction. Comparison with the distribution of temperature on the fault derived from thermo-kinematic modeling shows that aseismic slip becomes dominant where temperature is estimated to exceed 200° at depth. This inference is consistent with the temperature induced transition from velocity-weakening to velocity-strengthening friction that is observed in laboratory experiments on quartzo-feldspathic rocks. The time evolution of afterslip is consistent with afterslip being governed by velocity-strengthening frictional sliding. The dependency of friction, μ, on the sliding velocity, V, is estimated to be ${{\partial \mu }/{\partial \, {\rm ln}\, V}} = 8 \times 10^{ - 3}$ . We report an azimuthal difference of about 10–20° between preseismic and postseismic GPS velocities, which we interpret to reflect the very low shear stress on the creeping portion of the décollement beneath the Central Range, of the order of 1–3 MPa, implying a very low friction of about 0.01. This study highlights the importance of temperature and pore pressure in determining fault frictional sliding.  相似文献   

16.
大地震发生之后通常会诱发一系列的余震序列,对比1976年MS7.8唐山大地震和2001年MS8.1昆仑山大地震周边区域的地震事件可以看出,唐山大地震余震活动时间要明显长于昆仑山大地震余震活动时间.余震序列往往与震后形变密切相关,而影响震后形变的因素不仅与地震发震断层和震级有关,同时与岩石圈的结构有关.考虑到唐山大地震的发震区华北地块和昆仑山大地震的发震区青藏高原有着较大的岩石圈结构差异,本文采用PSGRN/PSCMP软件计算了岩石圈分层模型的大地震同震和震后形变,分析了地壳弹性模量、弹性厚度以及黏滞性系数对同震和震后形变的影响,进而讨论了影响唐山地震和昆仑山地震余震序列差异的原因.计算结果显示,震后形变会在黏弹性效应的作用下逐渐调整,震后形变的持续时间与地壳弹性模量、地壳弹性厚度和下地壳黏滞性系数有关.上地壳和下地壳弹性模量越大,震后形变达到稳定值的时间越短,弹性模量对震后形变稳定值影响很小.地壳弹性厚度越大,震后形变达到稳定值的时间越短,当断层面底端深度小于地壳弹性厚度时,地壳弹性厚度的增加会引起震后形变稳定值的减小;下地壳厚度对震后形变达到稳定值的时间和稳定值基本无影响.下地壳黏滞性系数越大,震后形变达到稳定值的时间越长,反之亦然.结合唐山地震区的华北地块和昆仑山地震的青藏高原深部结构发现,两者之间的上地壳弹性模型差别不大,唐山地震区地壳弹性厚度略大于昆仑山地震区,但昆仑山地震区下地壳黏滞性系数明显低于唐山地震区.这些因素均决定了昆仑山地震的震后形变持续时间短(余震时间序列短)而唐山地震的震后形变持续时间长(余震时间序列长).由此可见,岩石圈结构差异可能是导致唐山地震和昆仑山地震余震序列差异的主要因素之一.  相似文献   

17.
王丽凤  刘杰  赵金贵  赵静 《地震》2013,33(4):238-247
本文基于日本GEONET的GPS观测资料, 对日本2011年9.0级地震的同震和震后形变过程进行了研究。 结果表明, 日本9.0级地震使中国大陆出现了显著的同震位移, 几乎对整个中国大陆都有影响。 位移量在中国东北地区最大, 接近甚至超过该地区的年运动速率。 震后1年观测到的形变基本上可由沿着断层面的蠕滑进行模拟, 粘弹松弛的贡献不大。 根据所得到的震后蠕滑模型, 震后1年形变所释放的能量等同于发生一个8.7级地震, 其影响主要在东部地区, 最大位移约为年运动速率的30%。 预测在未来2年, 该地震的影响范围将逐渐减小。 地震造成的粘弹松弛在未来50~100年的尺度上, 对东北地区有拉张效应。 日本9.0级地震整体上起到了卸载中国大陆在板块间挤压过程中所累积应变能的作用, 因此该地震发生后的几个月, 中国大陆东部的地震活动水平较震前明显降低。  相似文献   

18.
本文采用分层黏弹性介质模型, 模拟了2015年4月25日尼泊尔MS8.1地震产生的同震和震后地表位移场, 计算了尼泊尔大地震引起的青藏高原及其周缘主要断裂上的同震和震后库仑应力变化。 地表位移场结果显示, 此次尼泊尔8.1级地震对中国大陆的影响区域主要是拉萨地块和羌塘地块, 对拉萨块体的影响主要表现为水平向南朝喜马拉雅构造带的汇聚作用, 垂直同震位移以下降为主, 震后以上升为主。 静态库仑破裂应力变化的计算结果显示, 尼泊尔大地震对青藏块体中南部的拉张性断层影响最为显著, 其中, 使尼泊尔地震北部的拉张断层的库仑应力显著增加, 个别断层库仑应力增加量超过0.01MPa, 而使其两侧的拉张断层库仑应力明显降低; 对青藏块体中部的走滑断裂则以正影响为主; 另外, 对南北地震带主要以负影响为主, 但量值微小。  相似文献   

19.
2001年11月14日,在青海和新疆交界处发生了昆仑山Ms8.1级强烈地震,GPS后观测显示,此次地震震后形变不仅在断裂南北两侧存在很大的差异,而且在短时间调整后断裂南北两侧表现为同向运动.本文以观测的地震形变为约束,通过有限元数值模拟分析昆仑山地震震后形变的物理机制.建立有关的有限元虚功方程,通过有限元数值方法模拟震后形变,从理论上分析介质的非均匀性、黏滞性松弛、流体调整对震后形变的影响.采用网格搜索确定昆仑断裂南北两侧下地壳的黏滞系数分别为5.0×1017Pa·s, 9.0×1018Pa·s左右,正是这十余倍的差异引起了断裂两侧震后形变的非对称性和同向运动,这一差异既是长期地质作用的结果,又是现代地球动力学环境的决定因素之一.通过数值模拟定性讨论了断裂北侧地表形变在震后短期内的调整,对于靠近断裂附近的测点可能是黏弹性松弛和孔隙流体调整共同作用的结果,所以在分析短期震后形变时综合考虑黏弹松弛和孔隙流体调整是很有必要的.  相似文献   

20.
Using a more realistic model of multi-layered viscoelastic media, and considering the effects of the coseismic dislocation and the postseismic viscoelastic relaxation caused by the 34 great earthquakes occurring along the eastern boundary of the Sichuan-Yunnan block since 1480 and the interseismic stress accumulation caused by the tectonic loading generated by plate motions which were modeled by introducing "virtual negative displacements" along the major fault segment in the region under study, we calculated the evolution of the Coulomb stress change in each fault plane of 18 major fault segments along the eastern boundary caused by the coseismic, postseismic and interseismic effects. We studied the interactions of the Xianshuihe, Anninghe, Zemuhe and Xiaojiang fault zones on the eastern boundary of the Sichuan-Yunnan block. By evaluating if the previous earthquake could bring another earthquake closer to or farther from failure, we analyzed the interactions of the earthquakes which occurred in the different segments in the same fault zone, or in the different fault zones respectively. And further based on the calculation results of the Coulomb stress change on the fault planes, we analyzed the seismic hazard of each fault segment.The results show that the previous earthquake may trigger another earthquake which can occur in the same fault zone or in the different fault zone. And the calculation results on the evolution of the cumulative Coulomb stress change in the each fault segment show that, the Coulomb stress increases significantly in the middle section and the Moxi segment of the Xianshuihe fault zone, the Mianning-Xichang segment of the Anninghe fault zone, the Qiaojia-dongchuan segment and the Jianshui segment of the Xiaojiang fault zone, and the seismic hazard in these fault segments is worthy paying attention to.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号