共查询到18条相似文献,搜索用时 406 毫秒
1.
针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,该文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法:①以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;②为了进一步提高网络对道路细节特征的识别能力,在U-Net中引入空洞卷积模块,学习更多的语义信息来改善提取结果出现的模糊问题.在Massachusetts roads和高分辨率城市道路影像Cheng roads dataset数据集下的实验结果表明,在召回率、精度和F1-score指标分别达到了82.5%、86.7%、84.5%;93.2%、92.1%、92.6%.与基础的U-Net相比,该算法在解决细节特征丢失和提取结果模糊问题方面更具有应用价值. 相似文献
2.
3.
4.
高分辨率遥感影像可以真实的反映各种地物信息,其空间分辨率一般可达到米级对促进道路建设发展具有十分重要的意义。本文结合高分辨率遥感影像的特点,融入多尺度技术,利用边缘特征检测的方法进行道路提取技术。实验结果表明,该方法能够有效地消除高分辨率遥感影像城市道路路面噪声的影响,大大提高了图像质量。 相似文献
5.
项皓东 《测绘与空间地理信息》2013,(8):202-206
道路作为城市的重要组成部分,是衡量城市发展的重要标准之一,研究基于高分辨率遥感影像的道路信息提取具有重要的现实意义。一直以来,从高分辨率遥感影像中提取道路特征信息都是研究的热点和难点。本文首先阐述了道路信息提取的思想和基本方法,列举并分析了几种比较有代表性的道路特征提取方法,并指出了其中所存在的问题,最后对高分辨率遥感影像中道路信息的提取研究前景进行了展望。 相似文献
6.
深度卷积神经网络(deep convolutional neural network,DCNN)在高分辨率遥感图像自动道路提取领域被广泛应用,但现有方法难以对预测结果中像素间的上下文关系建模。针对此问题,已有研究利用全连接条件随机场(fully connected conditional random field,FullCRF)结合上下文信息对语义分割结果进行二次优化,但无法有效改善道路结构不连续问题。为改善道路结构的完整性,提出一种结合DCNN的短距条件随机场模型(short range conditional random field,SRCRF),SRCRF利用DCNN强大的特征提取能力并控制FullCRF的推理范围缓解过度平滑现象,解决道路提取结果中的结构不连续、不完整问题。实验结果表明,在Zimbawe-Roads数据集与Cheng-Roads数据集中,SRCRF的
7.
利用高分辨率遥感影像提取建筑物是目前研究热点之一,但由于建筑物颜色各异、形状大小不同、细节繁多,提取结果普遍存在边缘模糊、转角圆滑和细节丢失等问题。本文提出一种基于空洞卷积的E-Unet深度学习网络。在E-Unet的结构设计中,引入跳跃连接以减少边缘和转角的细节损失;采用新设计的卷积模块,使其扩大感受野的同时减少参数量;底层增加Dropout模块避免网络发生过拟合现象;遥感影像输入网络前先进行直方图均衡化、高斯双边滤波和波段间比值运算,然后合并为多波段张量输入模型(不转换为灰度图像)。为验证网络性能、明确性能提升的原因,本文在Massachusetts和WHU建筑物数据集上设计了两组试验。第1组是E-Unet、Unet和Res-net 3种网络的对比试验,结果表明E-Unet不仅精度评价结果优于Unet和Res-net,而且建筑物边角的细节被完整提取。第2组是消融试验,目的是明确预处理模块对提取精度的提升效果,结果表明预处理模块能提升不同网络提取精度。通过这两组试验证明了预处理模块的有效性和本文提出网络的优越性。 相似文献
8.
9.
10.
针对多模态、多尺度的高分辨率遥感影像分割问题,提出了结合空洞卷积的FuseNet变体网络架构对常见的土地覆盖对象类别进行语义分割。首先,采用FuseNet变体网络将数字地表模型(digital surface model,DSM)图像中包含的高程信息与红绿蓝(red green blue,RGB)图像的颜色信息融合;其次,在编码器和解码器中分别使用空洞卷积来增大卷积核感受野;最后,对遥感影像逐像素分类,输出遥感影像语义分割结果。实验结果表明,所提算法在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的Potsdam、Vaihingen数据集上的mF1得分分别达到了91.6%和90.4%,优于已有的主流算法。 相似文献
11.
12.
随着遥感影像分辨率的不断提高,基于高分辨率遥感影像的目标自动提取逐步成为研究热点。本文采用面向对象的图像分析方法,基于Ecognition遥感图像处理平台,对IKONOS影像进行道路提取实验,重点对图像分割方案、道路提取规则、后处理方法等进行探讨。 相似文献
13.
14.
基于对象的城市绿地信息提取技术的研究 总被引:2,自引:1,他引:2
依据高分辨率遥感影像的特征,采用基于对象的分类技术,并结合乌鲁木齐市的QUICKBIRD影像,提取城市绿地信息。研究结果表明,此种分类方法具有较高的分类精度和较快的分类速度。 相似文献
15.
由于农村建筑物结构多样、空间分布复杂等特征,自动提取面临较多困难。针对该问题,本文提出采用膨胀卷积和金字塔池化表达的神经网络模型用于遥感影像中农村建筑物自动提取。在膨胀卷积神经网络模块中,通过改变孔尺寸的大小,获取不同感受野的特征信息;在金字塔表达方面,每个模块输入不同尺度的信息,且同时下采样的倍率也不同,获取多维的金字塔尺度特征;最终将提取的浅层及深层尺度特征信息进行融合,构建一个改进的适用于农村建筑物目标自动提取的深度学习模型。试验结果表明,与FCN-8s和DeepLab模型提取的结果相比,本文方法在农村建筑物提取中表现较好的性能,提取精度明显提高,且更好保留了目标边界细节信息,减少了噪声。 相似文献
16.
提出一种基于卷积神经网络和图割法的自动提取高分影像建筑物的方法。首先,通过卷积神经网络定位与检测建筑物的位置,逐一提取单个建筑物轮廓,利用检测结果分别建立建筑物和非建筑物的高斯混合模型(GMM),然后结合最大流最小割的图像分割方式实现全局优化,完成建筑物初步提取,最后用形态学进行优化。通过试验证明了该方法的可行性。 相似文献
17.
18.
针对传统道路提取方法应用于新数据泛化能力不足的问题,研究了通过特征迁移和编解码网络实现跨数据域的道路提取方法。首先,构建了基于编解码网络的道路提取基本模型,用于实现单一数据来源的道路提取任务。然后,基于道路提取网络结构和循环一致性原则,提出了用于跨数据域图像特征迁移的循环生成对抗网络,使目标域图像映射入源域特征空间。使用预训练的道路提取模型处理特征迁移后的目标域图像,即可实现跨数据域道路提取任务。试验结果表明,本文所提方法能够拓展道路提取网络的泛化能力,准确有效地提取跨数据域图像中的道路目标。相较于未特征迁移的结果,本文所提方法大幅改善了道路提取指标,使得F1提升了50%以上。本文方法不需要目标域的标注信息,也不需要对道路提取网络进行微调训练,而只需训练由目标域向源域的特征迁移模型,所耗时间和人力成本较低,因而具有良好的应用价值。 相似文献