首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
林娜  张小青  王岚  冯丽蓉  王伟 《测绘科学》2021,46(9):109-114,156
针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,该文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法:①以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;②为了进一步提高网络对道路细节特征的识别能力,在U-Net中引入空洞卷积模块,学习更多的语义信息来改善提取结果出现的模糊问题.在Massachusetts roads和高分辨率城市道路影像Cheng roads dataset数据集下的实验结果表明,在召回率、精度和F1-score指标分别达到了82.5%、86.7%、84.5%;93.2%、92.1%、92.6%.与基础的U-Net相比,该算法在解决细节特征丢失和提取结果模糊问题方面更具有应用价值.  相似文献   

2.
李彩露  吴平  王宁  刘源璋 《地理空间信息》2011,9(3):114-115,119
从高分辨率遥感影像的特点出发介绍了道路在高分辨率遥感影像上所具有的特征,介绍了道路提取的基本方法和研究现状,对现有几种代表性的道路提取方法进行了详细地分析,并对高分辨率遥感影像上道路提取的研究前景进行了展望.  相似文献   

3.
基于形态分割的高分辨率遥感影像道路提取   总被引:26,自引:1,他引:26  
基于灰度形态学,提出一种从高分辨率遥感图像提取道路网络的方法.首先利用灰度形态特征对遥感影像进行分割,进而得到基本的道路网络轮廓.然后在此基础上,利用线段特征匹配方法提取道路网络.提出的方法能适应于从道路和背景区别不很清楚的遥感图像中提取道路.实验结果也表明,本文方法能有效地从遥感影像中提取道路网络.  相似文献   

4.
林耿斌 《北京测绘》2018,32(2):175-178
高分辨率遥感影像可以真实的反映各种地物信息,其空间分辨率一般可达到米级对促进道路建设发展具有十分重要的意义。本文结合高分辨率遥感影像的特点,融入多尺度技术,利用边缘特征检测的方法进行道路提取技术。实验结果表明,该方法能够有效地消除高分辨率遥感影像城市道路路面噪声的影响,大大提高了图像质量。  相似文献   

5.
道路作为城市的重要组成部分,是衡量城市发展的重要标准之一,研究基于高分辨率遥感影像的道路信息提取具有重要的现实意义。一直以来,从高分辨率遥感影像中提取道路特征信息都是研究的热点和难点。本文首先阐述了道路信息提取的思想和基本方法,列举并分析了几种比较有代表性的道路特征提取方法,并指出了其中所存在的问题,最后对高分辨率遥感影像中道路信息的提取研究前景进行了展望。  相似文献   

6.

深度卷积神经网络(deep convolutional neural network,DCNN)在高分辨率遥感图像自动道路提取领域被广泛应用,但现有方法难以对预测结果中像素间的上下文关系建模。针对此问题,已有研究利用全连接条件随机场(fully connected conditional random field,FullCRF)结合上下文信息对语义分割结果进行二次优化,但无法有效改善道路结构不连续问题。为改善道路结构的完整性,提出一种结合DCNN的短距条件随机场模型(short range conditional random field,SRCRF),SRCRF利用DCNN强大的特征提取能力并控制FullCRF的推理范围缓解过度平滑现象,解决道路提取结果中的结构不连续、不完整问题。实验结果表明,在Zimbawe-Roads数据集与Cheng-Roads数据集中,SRCRF的F1分数相比DCNN分别上升约4.01%、3.73%,相比FullCRF分别上升约3.25%、2.28%。

  相似文献   

7.
利用高分辨率遥感影像提取建筑物是目前研究热点之一,但由于建筑物颜色各异、形状大小不同、细节繁多,提取结果普遍存在边缘模糊、转角圆滑和细节丢失等问题。本文提出一种基于空洞卷积的E-Unet深度学习网络。在E-Unet的结构设计中,引入跳跃连接以减少边缘和转角的细节损失;采用新设计的卷积模块,使其扩大感受野的同时减少参数量;底层增加Dropout模块避免网络发生过拟合现象;遥感影像输入网络前先进行直方图均衡化、高斯双边滤波和波段间比值运算,然后合并为多波段张量输入模型(不转换为灰度图像)。为验证网络性能、明确性能提升的原因,本文在Massachusetts和WHU建筑物数据集上设计了两组试验。第1组是E-Unet、Unet和Res-net 3种网络的对比试验,结果表明E-Unet不仅精度评价结果优于Unet和Res-net,而且建筑物边角的细节被完整提取。第2组是消融试验,目的是明确预处理模块对提取精度的提升效果,结果表明预处理模块能提升不同网络提取精度。通过这两组试验证明了预处理模块的有效性和本文提出网络的优越性。  相似文献   

8.
利用配准的LiDAR数据生成DSM深度影像并提取建筑物轮廓,同时对QuickBird多光谱影像采用监督分类法提取植被区域。在此基础上,将建筑物和植被剔除,剩余部分利用形态学算子对道路进行修饰和完善,提取道路中心线。实验表明,基于机载LiDAR和高分辨率遥感影像的道路中心线提取方法,比单一利用遥感影像有更好的效果。  相似文献   

9.
高分辨率遥感影像提取道路的方法综述与思考   总被引:12,自引:0,他引:12  
 介绍了高分辨率遥感影像上道路的特征、模型和道路提取的基本思想,对已有的道路提取方法进行了分析,并对道路提取问题进行思考,提出下一步的研究方向。  相似文献   

10.
针对多模态、多尺度的高分辨率遥感影像分割问题,提出了结合空洞卷积的FuseNet变体网络架构对常见的土地覆盖对象类别进行语义分割。首先,采用FuseNet变体网络将数字地表模型(digital surface model,DSM)图像中包含的高程信息与红绿蓝(red green blue,RGB)图像的颜色信息融合;其次,在编码器和解码器中分别使用空洞卷积来增大卷积核感受野;最后,对遥感影像逐像素分类,输出遥感影像语义分割结果。实验结果表明,所提算法在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的Potsdam、Vaihingen数据集上的mF1得分分别达到了91.6%和90.4%,优于已有的主流算法。  相似文献   

11.
针对高分辨率遥感影像中细小道路纹理特征不明显、信息提取困难的问题,本文提出并实现了一种融合不同尺度特征的深度学习道路提取新方法。首先引入CoT模块构建残差网络,以充分利用局部与全局上下文信息提取不同尺度道路特征;然后构建特征金字塔注意力模块,融合不同层级道路特征信息;最后使用全局注意力上采样模块结合全局背景对道路细节进行恢复。试验结果表明,该方法的召回率、交并比均优于已有方法,能够较完整准确地提取遥感影像中的道路信息,提升道路提取效率。  相似文献   

12.
随着遥感影像分辨率的不断提高,基于高分辨率遥感影像的目标自动提取逐步成为研究热点。本文采用面向对象的图像分析方法,基于Ecognition遥感图像处理平台,对IKONOS影像进行道路提取实验,重点对图像分割方案、道路提取规则、后处理方法等进行探讨。  相似文献   

13.
根据遥感影像道路特征,提出一种基于卷积运算和数学形态学的道路提取方法。首先通过拉普拉斯算子对图像行锐化处理;再用卷积运算获得线特征加强系数,在加强道路线特征的同时,背景灰度恒定区域被弱化;然后去除短线和块状噪声,适当地加入人工干预进行道路修剪;最后用数学形态学细化处理得到道路网。实验结果表明,该方法能有地从遥感影像中提取出道路。  相似文献   

14.
基于对象的城市绿地信息提取技术的研究   总被引:2,自引:1,他引:2  
依据高分辨率遥感影像的特征,采用基于对象的分类技术,并结合乌鲁木齐市的QUICKBIRD影像,提取城市绿地信息。研究结果表明,此种分类方法具有较高的分类精度和较快的分类速度。  相似文献   

15.
由于农村建筑物结构多样、空间分布复杂等特征,自动提取面临较多困难。针对该问题,本文提出采用膨胀卷积和金字塔池化表达的神经网络模型用于遥感影像中农村建筑物自动提取。在膨胀卷积神经网络模块中,通过改变孔尺寸的大小,获取不同感受野的特征信息;在金字塔表达方面,每个模块输入不同尺度的信息,且同时下采样的倍率也不同,获取多维的金字塔尺度特征;最终将提取的浅层及深层尺度特征信息进行融合,构建一个改进的适用于农村建筑物目标自动提取的深度学习模型。试验结果表明,与FCN-8s和DeepLab模型提取的结果相比,本文方法在农村建筑物提取中表现较好的性能,提取精度明显提高,且更好保留了目标边界细节信息,减少了噪声。  相似文献   

16.
刘舸  邓兴升 《测绘通报》2019,(11):69-73
提出一种基于卷积神经网络和图割法的自动提取高分影像建筑物的方法。首先,通过卷积神经网络定位与检测建筑物的位置,逐一提取单个建筑物轮廓,利用检测结果分别建立建筑物和非建筑物的高斯混合模型(GMM),然后结合最大流最小割的图像分割方式实现全局优化,完成建筑物初步提取,最后用形态学进行优化。通过试验证明了该方法的可行性。  相似文献   

17.
采用形态学细化算法,将二值化影像形态学细化之后再进行峰值检测,有效地去除了虚假峰值,提高了道路提取精度及计算效率,为此,利用用模糊Hough变换算法提取遥感影像中的城市道路。试验表明,其方法在计算效率、提取精度以及内存占用方面具有明显优势。  相似文献   

18.
针对传统道路提取方法应用于新数据泛化能力不足的问题,研究了通过特征迁移和编解码网络实现跨数据域的道路提取方法。首先,构建了基于编解码网络的道路提取基本模型,用于实现单一数据来源的道路提取任务。然后,基于道路提取网络结构和循环一致性原则,提出了用于跨数据域图像特征迁移的循环生成对抗网络,使目标域图像映射入源域特征空间。使用预训练的道路提取模型处理特征迁移后的目标域图像,即可实现跨数据域道路提取任务。试验结果表明,本文所提方法能够拓展道路提取网络的泛化能力,准确有效地提取跨数据域图像中的道路目标。相较于未特征迁移的结果,本文所提方法大幅改善了道路提取指标,使得F1提升了50%以上。本文方法不需要目标域的标注信息,也不需要对道路提取网络进行微调训练,而只需训练由目标域向源域的特征迁移模型,所耗时间和人力成本较低,因而具有良好的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号