首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
林娜  张小青  王岚  冯丽蓉  王伟 《测绘科学》2021,46(9):109-114,156
针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,该文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法:①以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;②为了进一步提高网络对道路细节特征的识别能力,在U-Net中引入空洞卷积模块,学习更多的语义信息来改善提取结果出现的模糊问题.在Massachusetts roads和高分辨率城市道路影像Cheng roads dataset数据集下的实验结果表明,在召回率、精度和F1-score指标分别达到了82.5%、86.7%、84.5%;93.2%、92.1%、92.6%.与基础的U-Net相比,该算法在解决细节特征丢失和提取结果模糊问题方面更具有应用价值.  相似文献   

2.
李彩露  吴平  王宁  刘源璋 《地理空间信息》2011,9(3):114-115,119
从高分辨率遥感影像的特点出发介绍了道路在高分辨率遥感影像上所具有的特征,介绍了道路提取的基本方法和研究现状,对现有几种代表性的道路提取方法进行了详细地分析,并对高分辨率遥感影像上道路提取的研究前景进行了展望.  相似文献   

3.
基于形态分割的高分辨率遥感影像道路提取   总被引:26,自引:1,他引:26  
基于灰度形态学,提出一种从高分辨率遥感图像提取道路网络的方法.首先利用灰度形态特征对遥感影像进行分割,进而得到基本的道路网络轮廓.然后在此基础上,利用线段特征匹配方法提取道路网络.提出的方法能适应于从道路和背景区别不很清楚的遥感图像中提取道路.实验结果也表明,本文方法能有效地从遥感影像中提取道路网络.  相似文献   

4.
林耿斌 《北京测绘》2018,32(2):175-178
高分辨率遥感影像可以真实的反映各种地物信息,其空间分辨率一般可达到米级对促进道路建设发展具有十分重要的意义。本文结合高分辨率遥感影像的特点,融入多尺度技术,利用边缘特征检测的方法进行道路提取技术。实验结果表明,该方法能够有效地消除高分辨率遥感影像城市道路路面噪声的影响,大大提高了图像质量。  相似文献   

5.
道路作为城市的重要组成部分,是衡量城市发展的重要标准之一,研究基于高分辨率遥感影像的道路信息提取具有重要的现实意义。一直以来,从高分辨率遥感影像中提取道路特征信息都是研究的热点和难点。本文首先阐述了道路信息提取的思想和基本方法,列举并分析了几种比较有代表性的道路特征提取方法,并指出了其中所存在的问题,最后对高分辨率遥感影像中道路信息的提取研究前景进行了展望。  相似文献   

6.

深度卷积神经网络(deep convolutional neural network,DCNN)在高分辨率遥感图像自动道路提取领域被广泛应用,但现有方法难以对预测结果中像素间的上下文关系建模。针对此问题,已有研究利用全连接条件随机场(fully connected conditional random field,FullCRF)结合上下文信息对语义分割结果进行二次优化,但无法有效改善道路结构不连续问题。为改善道路结构的完整性,提出一种结合DCNN的短距条件随机场模型(short range conditional random field,SRCRF),SRCRF利用DCNN强大的特征提取能力并控制FullCRF的推理范围缓解过度平滑现象,解决道路提取结果中的结构不连续、不完整问题。实验结果表明,在Zimbawe-Roads数据集与Cheng-Roads数据集中,SRCRF的F1分数相比DCNN分别上升约4.01%、3.73%,相比FullCRF分别上升约3.25%、2.28%。

  相似文献   

7.
利用高分辨率遥感影像提取建筑物是目前研究热点之一,但由于建筑物颜色各异、形状大小不同、细节繁多,提取结果普遍存在边缘模糊、转角圆滑和细节丢失等问题。本文提出一种基于空洞卷积的E-Unet深度学习网络。在E-Unet的结构设计中,引入跳跃连接以减少边缘和转角的细节损失;采用新设计的卷积模块,使其扩大感受野的同时减少参数量;底层增加Dropout模块避免网络发生过拟合现象;遥感影像输入网络前先进行直方图均衡化、高斯双边滤波和波段间比值运算,然后合并为多波段张量输入模型(不转换为灰度图像)。为验证网络性能、明确性能提升的原因,本文在Massachusetts和WHU建筑物数据集上设计了两组试验。第1组是E-Unet、Unet和Res-net 3种网络的对比试验,结果表明E-Unet不仅精度评价结果优于Unet和Res-net,而且建筑物边角的细节被完整提取。第2组是消融试验,目的是明确预处理模块对提取精度的提升效果,结果表明预处理模块能提升不同网络提取精度。通过这两组试验证明了预处理模块的有效性和本文提出网络的优越性。  相似文献   

8.
利用配准的LiDAR数据生成DSM深度影像并提取建筑物轮廓,同时对QuickBird多光谱影像采用监督分类法提取植被区域。在此基础上,将建筑物和植被剔除,剩余部分利用形态学算子对道路进行修饰和完善,提取道路中心线。实验表明,基于机载LiDAR和高分辨率遥感影像的道路中心线提取方法,比单一利用遥感影像有更好的效果。  相似文献   

9.
针对多模态、多尺度的高分辨率遥感影像分割问题,提出了结合空洞卷积的FuseNet变体网络架构对常见的土地覆盖对象类别进行语义分割。首先,采用FuseNet变体网络将数字地表模型(digital surface model,DSM)图像中包含的高程信息与红绿蓝(red green blue,RGB)图像的颜色信息融合;其次,在编码器和解码器中分别使用空洞卷积来增大卷积核感受野;最后,对遥感影像逐像素分类,输出遥感影像语义分割结果。实验结果表明,所提算法在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的Potsdam、Vaihingen数据集上的mF1得分分别达到了91.6%和90.4%,优于已有的主流算法。  相似文献   

10.
针对基于像素道路提取方法存在的道路特征利用不够充分的问题,提出了一种采用道路基元的面向对象的道路提取方法。首先根据道路特征定义道路基元,然后在利用区域生长分割出道路的基础上进行道路基元的搜寻与构建、跟踪与连接,初步得到道路与中心线网络,再通过后续处理得到最终的道路与中心线网络。利用GeoEye卫星影像进行了实验,结果表明,本文方法能较有效地提取高分辨率遥感影像上的道路。  相似文献   

11.
针对传统的建筑物提取方法精度较低和边界不完整等问题,本文提出基于深度学习的高分辨率遥感影像建筑物提取方法。首先,采用主成分变换非监督预训练网络结构,获得待提取遥感影像特征。其次,为减少在池化过程中影像特征信息的丢失,提出自适应池化模型,通过非下采样轮廓波变换来获取影像纹理特征,并将纹理特征输入网络中参与建筑物提取。最后,将影像特征输入softmax分类器进行分类,获得建筑物提取结果。选取典型区域进行建筑物提取试验,并与典型建筑物提取方法进行对比分析,结果表明,本文提取方法精度高,并且提取建筑物的边界清晰、完整。  相似文献   

12.
高分辨率遥感影像语义分割的半监督全卷积网络法   总被引:1,自引:0,他引:1  
耿艳磊  陶超  沈靖  邹峥嵘 《测绘学报》2020,49(4):499-508
在遥感领域,利用大量的标签影像数据来监督训练全卷积网络,实现影像语义分割的方法会导致标签绘制成本昂贵,而少量标签数据的使用会导致网络性能下降。针对这一问题,本文提出了一种基于半监督全卷积网络的高分辨率遥感影像语义分割方法。通过采用一种集成预测技术,同时优化有标签样本上的标准监督分类损失及无标签数据上的非监督一致性损失,来训练端到端的语义分割网络。为验证方法的有效性,分别使用ISPRS提供的德国Vaihingen地区无人机影像数据集及国产高分一号卫星影像数据进行试验。试验结果表明,与传统方法相比,无标签数据的引入可有效提升语义分割网络的分类精度并可有效降低有标签数据过少对网络学习性能的影响。  相似文献   

13.
高分辨率影像分类的最优分割尺度计算   总被引:2,自引:0,他引:2  
针对高分辨率遥感影像分类与信息提取中存在的难点,基于不同目标地物在高分辨率影像上具有对应最优分割尺度的基本思想,该文在分析现有最优分割尺度确定方法的基础上,提出了加权均值法结合最大面积的最优分割尺度的确定方法;利用该方法,进行了高分辨率影像分割实验,获取了对应典型地物的最优分割尺度数值范围,实现了典型地物的信息提取;并运用样本点检验的方法,计算并分析了分类的精度结果。结果表明:基于加权均值与最大面积相结合的最优分割尺度计算方法,应用于面向对象高分辨率影像信息的提取具有较为理想的精度。  相似文献   

14.
张玉鑫  颜青松  邓非 《测绘学报》2022,51(1):135-144
针对卷积神经网络在提取建筑物的过程中,存在建筑物边界不准确和建筑物内部空洞等问题,提出以RSU模块(residual U-block)为核心的MPRSU-Net (multi-path residual U-block network)。该模块利用编码器-解码器结构和残差连接,实现了局部特征和多尺度特征的融合。由于一个RSU模块提取的信息有限,MPRSU-Net进一步通过多路径结构并行了不同尺度的RSU模块,并在这些模块之间进行信息交换,提高了特征聚集效率。在分辨率为0.3 m的WHU和Inria建筑物数据集上进行试验,精度分别达95.65%和88.63%,IoU分别达91.17%和79.31%,验证了本文方法的有效性。此外,本文方法相较于U2Net,计算量明显降低,模型参数量减少68.63%,表明本文方法具有一定的应用价值。  相似文献   

15.
道路信息在多个应用领域中发挥着基础性的作用。光学遥感影像能够以较高的空间分辨率对目标地物进行精细化解译,可大幅增强地物目标的提取能力。充分利用光学遥感影像丰富的几何纹理信息,进行道路的精确提取,已成为当前遥感学界研究的热点与前沿问题。鉴于此,本文依据近年来大量相关文献,对现有的理论与方法进行了归类与总结,通过分析不同方法采用的道路特征组合,将道路提取方法划分为模板匹配、知识驱动、面向对象和深度学习4类方法,简要介绍了道路提取普适性的评价指标并对部分方法进行了分析与评价;最后对现有光学遥感影像道路提取的发展提出了建议和展望。  相似文献   

16.
融合可变形卷积与条件随机场的遥感影像语义分割方法   总被引:1,自引:1,他引:1  
左宗成  张文  张东映 《测绘学报》2019,48(6):718-726
当前,深度卷积神经网络在遥感影像语义分割领域取得了长足的发展.标准的卷积神经网络由于卷积核的几何形状是固定的,导致对几何变换的模拟能力受到限制.本文引入一种可变形卷积来增强卷积网络对空间变换的适应能力.由于神经网络架构中使用了池化层操作,这会导致在输出层未能充分地对局部对象进行准确的分割.为了克服这种特性,本文将神经网络输出层的粗糙预测分割结果通过全连接的条件随机场来进行处理,以此来提高对影像细节的分割能力.本文方法易于采用标准的反向传播算法进行端到端的方式训练.ISPRS数据集上的测试试验结果表明本文方法可以有效地克服遥感影像中分割对象的复杂结构对分割结果的影响,并在该数据集上获得了当前最好的语义分割结果.  相似文献   

17.
针对高分辨率遥感影像中细小道路纹理特征不明显、信息提取困难的问题,本文提出并实现了一种融合不同尺度特征的深度学习道路提取新方法。首先引入CoT模块构建残差网络,以充分利用局部与全局上下文信息提取不同尺度道路特征;然后构建特征金字塔注意力模块,融合不同层级道路特征信息;最后使用全局注意力上采样模块结合全局背景对道路细节进行恢复。试验结果表明,该方法的召回率、交并比均优于已有方法,能够较完整准确地提取遥感影像中的道路信息,提升道路提取效率。  相似文献   

18.
高分辨率遥感影像超像素的模糊聚类分割法   总被引:1,自引:0,他引:1  
传统模糊C均值聚类在影像分割中只考虑影像的灰度特征,导致该算法用于高空间分辨率遥感影像分割时分割结果不理想。针对该问题,本文提出了一种高分辨率遥感影像超像素的模糊聚类分割方法。该方法首先利用分水岭变换算法产生多个超像素子区域;然后比较各个子区域间光谱特征的相似性;最后利用融合光谱特征的模糊C均值聚类对这些超像素子区域进行合并。试验选用4组不同场景的遥感影像,采用定性和定量相结合的方法评价试验结果。试验结果表明,该方法有效提高了分割区域的分割精度,并取得了较好的分割视觉效果。  相似文献   

19.
本文主要研究通过高分辨率遥感影像和eCognition软件,利用面向对象信息提取技术来获取村庄尺度土地利用类型空间数据的技术方法。本项研究中的实验区主要地物包括麦田、旱作物、荒地、苗圃、道路、水体、建设用地和树木等类型。通过设置不同的分割参数并目视判定待识别地类的轮廓分割效果,获取适用于村庄尺度土地利用类型分类的最优分割参数,并通过分类精度对比说明面向对象信息提取相对于传统分类方法的巨大优势。  相似文献   

20.
基于高分辨率遥感影像的耕地地块提取方法研究   总被引:3,自引:0,他引:3  
庞新华  朱文泉  潘耀忠  贾斌 《测绘科学》2009,34(1):48-49,161
针对耕地地块提取问题,提出了一种基于图像分割的耕地地块提取新方法。该方法以高分辨率遥感影像为基础,借助于边缘提取和数学形态学的方法,通过边缘检测、边缘闭合、区域标号和后处理四个步骤,提取耕地地块。该方法在IDL6.3平台下编程实现。将此方法应用于北京地区QuickBird多光谱遥感影像,结果表明此方法有较好的定位精度,又在一定程度上去除了噪声,具有较好的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号