首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the step degree of nonlinearity has been introduced to conduct basic analysis and error propagation analysis for the pseudodynamic testing of nonlinear systems, it cannot be reliably used to select an appropriate time step before performing a pseudodynamic test. Therefore, a novel parameter of instantaneous degree of nonlinearity is introduced to monitor the stiffness change at the end of a time step, and can thus be used to evaluate numerical and error propagation properties for nonlinear systems. Based on these properties, it is possible to select an appropriate time step to conduct a pseudodynamic test in advance. This possibility is very important in pseudodynamic testing, since the use of an arbitrary time step might lead to unreliable results or even destroy the test specimen. In this paper, guidelines are proposed for choosing an appropriate time step for accurate integration of nonlinear systems. These guidelines require estimation of the maximum instantaneous degree of nonlinearity and the solution of the initial natural frequency. The Newmark explicit method is chosen for this study. All the analytical results and the guidelines proposed are thoroughly confirmed with numerical examples.  相似文献   

2.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   

3.
A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic testing of a real structure. In addition, it also offers good accuracy when compared to a general second-order accurate method for both linear elastic and nonlinear systems.  相似文献   

4.
Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing.Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However,their numerical properties in the solution of a nonlinear system are not apparent.Therefore,the performance of both algorithms for use in the solution...  相似文献   

5.
Real-time pseudodynamic (PSD) and hybrid PSD testing methods are displacement controlled experimental techniques that are used to investigate the dynamic behaviour of complex and load rate-dependent structures. Because the imposed command displacements are not predefined but generated during the test based on measured feedback, these methods are inherently prone to error propagation, which can affect the accuracy and even the stability of the entire experiment. As a result, to have these experimental methods as reliable tools, the accuracy of the test results needs to be assessed by carefully monitoring, and if possible, quantifying the errors involved. In this paper, phase and amplitude error indices (PAEI) are introduced to identify the experimental errors through uncoupled closed-form equations. Unlike the indicators that have been previously introduced in the literature for error identification purposes, PAEI do not use test setup specific parameters in their formulation, and can quantify the errors independent of the amplitude of the command displacements. As such, PAEI can be used as standard tools for assessing the quality of the experiments performed in different laboratories or under different conditions. Additionally, because they can quantify the error, when implemented online, PAEI have the potential to be incorporated in the control law and thereby improve the actuator control during the tests. The formulation and implementation of PAEI are provided in this paper. The enhanced performance of the proposed indices is demonstrated by processing several different measured and command signals using PAEI and comparing the results with those revealed by the previous indicators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Although it has been shown that the implementation of the HHT-α method can result in improved error propagation properties in pseudodynamic testing if the equation of motion is used instead of the difference equation to evaluate the next step acceleration, this paper proves that this method might lead to instability when used to solve a nonlinear system. Its unconditional stability is verified only for linear elastic systems, while for nonlinear systems, instability occurs as the step degree of convergence is less than 1. It is worth noting that the step degree of convergence can frequently be less than 1 in pseudodynamic testing, since a convergent solution is achieved only when the step degree of convergence is close to 1 regardless of whether its value is greater or less than 1. Therefore, the application of this scheme to pseudodynamic testing should be prohibited, since the possibility of instability might incorrectly destroy a specimen. Consequently, the implementation of the HHT-α method by using the difference equation to determine the next step acceleration is recommended for use in pseudodynamic testing.  相似文献   

7.
Real‐time pseudodynamic (PSD) and hybrid PSD test methods are experimental techniques to obtain the response of structures, where restoring force feedback is used by an integration algorithm to generate command displacements. Time delays in the restoring force feedback from the physical test structure and/or the analytical substructure cause inaccuracies and can potentially destabilize the system. In this paper a method for investigating the stability of structural systems involved in real‐time PSD and hybrid PSD tests with multiple sources of delay is presented. The method involves the use of the pseudodelay technique to perform an exact mapping of fixed delay terms to determine the stability boundary. The approach described here is intended to be a practical one that enables the requirements for a real‐time testing system to be established in terms of system parameters when multiple sources of delay exist. Several real‐time testing scenarios with delay that include single degree of freedom (SDOF) and multi‐degree of freedom (MDOF) real‐time PSD/hybrid PSD tests are analyzed to illustrate the method. From the stability analysis of the real‐time hybrid testing of an SDOF test structure, delay‐independent stability with respect to either experimental or analytical substructure delay is shown to exist. The conditions that the structural properties must satisfy in order for delay‐independent stability to exist are derived. Real‐time hybrid PSD testing of an MDOF structure equipped with a passive damper is also investigated, where observations from six different cases related to the stability plane behavior are summarized. Throughout this study, root locus plots are used to provide insight and explanation of the behavior of the stability boundaries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
波动有限元方程显式逐步积分格式稳定性分析   总被引:2,自引:0,他引:2  
对常用的波动有限元方程的两种显式格式的稳定性进行了分析,利用单元的最大频率乃是系统的特征频率的上界的概念结合模态分析方法,给出了便于实际应用的稳定性必要条件。同时,利用Von Neumann方法给出了这两种格式稳定性的充分条件,并通过算例对这两种稳定性条件进行验证。  相似文献   

9.
Newm ark-更新精细积分法是动力方程求解的隐式的时域逐步积分法,其稳定性条件非常容易满足。与隐式方法相比较,显式积分方法不需要求解耦联的方程组,可以有效地减少内存占用和机时耗费。因此,根据显式积分方法的特点和优点,基于Newm ark-更新精细积分法的基本思想,提出其显式积分格式。对显式积分方法的精度与稳定性进行了初步的分析,指出该显式积分方法具有极好的稳定性,其精度比隐式积分方法的精度稍低。随着时间步长的增加,其精度优于传统的方法。  相似文献   

10.
实时子结构实验Chang算法的稳定性和精度   总被引:7,自引:0,他引:7  
与慢速拟动力子结构实验相比,实时子结构实验的优点在于它能真实地反映速度相关型试件的特性。实时子结构实验的逐步积分算法通常借用拟动力算法,但是目前液压伺服作动器很难实现速度反馈控制,因而试件速度不能实现原算法的假定值,这样一来算法的稳定性和计算精度将发生改变。台湾学者S.Y.Chang提出一种无条件稳定的显式拟动力算法,本文分析了这种方法应用于实时子结构实验时的稳定性和计算精度。研究发现在实时子结构实验中该方法由无条件稳定变成了有条件稳定的,精度也发生了改变。  相似文献   

11.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the implementation details of a real‐time pseudodynamic test system that adopts an implicit time integration scheme. The basic configuration of the system is presented. Physical tests were conducted to evaluate the performance of the system and validate a theoretical system model that incorporates the dynamics and nonlinearity of a test structure and servo‐hydraulic actuators, control algorithm, actuator delay compensation methods, and the flexibility of an actuator reaction system. The robustness and accuracy of the computational scheme under displacement control errors and severe structural softening are examined with numerical simulations using the model. Different delay compensation schemes have been implemented and compared. One of the schemes also compensates for the deformation of an actuator reaction system. It has been shown that the test method is able to attain a good performance in terms of numerical stability and accuracy. However, it has been shown that test results obtained with this method can underestimate the inelastic displacement drift when severe strain softening develops in a test structure. This can be attributed to the fact that the numerical damping effect introduced by convergence errors becomes more significant as a structure softens. In a real‐time test, a significant portion of the convergence errors is caused by the time delay in actuator response. Hence, a softening structure demands higher precision in displacement control. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Real‐time pseudodynamic (PSD) testing is an experimental technique for evaluating the dynamic behaviour of a complex structure. During the test, when the targeted command displacements are not achieved by the test structure, or a delay in the measured restoring forces from the test structure exists, the reliability of the testing method is impaired. The stability and accuracy of real‐time PSD testing in the presence of amplitude error and a time delay in the restoring force is presented. Systems consisting of an elastic single degree of freedom (SDOF) structure with load‐rate independent and dependent restoring forces are considered. Bode plots are used to assess the effects of amplitude error and a time delay on the steady‐state accuracy of the system. A method called the pseudodelay technique is used to derive the exact solution to the delay differential equation for the critical time delay that causes instability of the system. The solution is expressed in terms of the test structure parameters (mass, damping, stiffness). An error in the restoring force amplitude is shown to degrade the accuracy of a real‐time PSD test but not destabilize the system, while a time delay can lead to instability. Example calculations are performed for determining the critical time delay, and numerical simulations with both a constant delay and variable delay in the restoring force are shown to agree well with the stability limit for the system based on the critical time delay solution. The simulation models are also used to investigate the effects of a time delay in the PSD test of an inelastic SDOF system. The effect of energy dissipation in an inelastic structure increases the limit for the critical time delay, due to the energy removed from the system by the energy dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
有阻尼振动方程常用显式积分格式稳定性分析   总被引:10,自引:5,他引:10  
本文主要介绍了用于求解有阻尼振动方程的四种常用显式积分方法,并针对其稳定性和精度进行了分析对比,讨论了其适用范围及阻尼对稳定性的影响。  相似文献   

15.
The implicit dissipative generalized‐ α method is analyzed using discrete control theory. Based on this analysis, a one‐parameter family of explicit direct integration algorithms with controllable numerical energy dissipation, referred to as the explicit KR‐α method, is developed for linear and nonlinear structural dynamic numerical analysis applications. Stability, numerical dispersion, and energy dissipation characteristics of the proposed algorithms are studied. It is shown that the algorithms are unconditionally stable for linear elastic and stiffness softening‐type nonlinear systems, where the latter indicates a reduction in post yield stiffness in the force–deformation response. The amount of numerical damping is controlled by a single parameter, which provides a measure of the numerical energy dissipation at higher frequencies. Thus, for a specific value of this parameter, the resulting algorithm is shown to produce no numerical energy dissipation. Furthermore, it is shown that the influence of the numerical damping on the lower mode response is negligible. It is further shown that the numerical dispersion and energy dissipation characteristics of the proposed explicit algorithms are the same as that of the implicit generalized‐ α method. A numerical example is presented to demonstrate the potential of the proposed algorithms in reducing participation of undesired higher modes by using numerical energy dissipation to damp out these modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Real‐time hybrid testing is a method that combines experimental substructure(s) representing component(s) of a structure with a numerical model of the remaining part of the structure. These substructures are combined with the integration algorithm for the test and the servo‐hydraulic actuator to form the real‐time hybrid testing system. The inherent dynamics of the servo‐hydraulic actuator used in real‐time hybrid testing will give rise to a time delay, which may result in a degradation of accuracy of the test, and possibly render the system to become unstable. To acquire a better understanding of the stability of a real‐time hybrid test with actuator delay, a stability analysis procedure for single‐degree‐of‐freedom structures is presented that includes both the actuator delay and an explicit integration algorithm. The actuator delay is modeled by a discrete transfer function and combined with a discrete transfer function representing the integration algorithm to form a closed‐loop transfer function for the real‐time hybrid testing system. The stability of the system is investigated by examining the poles of the closed‐loop transfer function. The effect of actuator delay on the stability of a real‐time hybrid test is shown to be dependent on the structural parameters as well as the form of the integration algorithm. The stability analysis results can have a significant difference compared with the solution from the delay differential equation, thereby illustrating the need to include the integration algorithm in the stability analysis of a real‐time hybrid testing system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A numerical procedure for a dynamic non-linear finite element analysis is proposed here to analyse three-dimensional reinforced concrete shear wall structures subjected to earthquake motions. A shear wall is modelled as a quasi-three dimensional structure which is composed of plane elements considering the in-plane stiffness of orthogonal flange panels. The proposed constitutive model is based on the non-linearity of reinforcement and concrete in which the tension stiffening in tension and the degradation of stiffness and strength in compression of concrete after cracking are considered. The acceleration-pulse method, which is a kind of explicit analytical procedure, is employed to solve the non-linear dynamic equations, where the dynamic equation can be solved without stiffness matrix and so the iterative procedure is not necessary for descending portion of stress–strain relationship caused by cracking and softening after compressive strength in concrete. The damping effect is considered by assuming equivalent viscous damping which can give good cyclic behaviours of inertia force vs. displacement relationships. This analytical method was applied to a test specimen of a reinforced concrete shear wall with a H-shaped section which was vibrated up to failure by using a large-scale shaking table with high -performance in Japan. The test was performed as one of the dynamic model tests for evaluation of seismic behaviour of nuclear reactor buildings. The calculations were performed sequentially from the elastic range to failure. The comparison with the test results shows that this approach has good accuracy. © 1997 by John Wiley & Sons Ltd  相似文献   

19.
20.
结合国际地震工程界提出的新一代基于性能的地震工程的框架方法,重点阐述了性能评估中涉及的主要问题。对性能评估使用的静力非线性分析、动力非线性分析方法进行了总结,在此基础上详细阐述了在基于概率的性能评估中有应用前景的增量动力分析方法的概念、相关问题及其应用,并简要介绍了基于增量动力分析思想提出的一些简化方法。最后提出了今后研究的建议,特别是结构非线性分析方面的研究重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号