首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Debris flows and debris floods cause frequent geomorphic hazards, even in the mid‐mountains of Central Europe. In the Hrubý Jeseník Mountains (Eastern Sudetes, Czech Republic), strong anthropogenic interventions have created specific conditions for erosion, transport and accumulation of material released by debris flow/flood events. We present a detailed spatio‐temporal reconstruction of the hydro‐geomorphic process activity in two adjacent sub‐catchments using dendrogeomorphic methods applied to the steep, narrow channels. An analysis of 172 sampled trees [Picea Abies (L.) Karst.] revealed 14 torrential events since 1943 in the Klepá?ský stream sub‐catchment and 11 events since 1897 in the Keprnický stream sub‐catchment. Identical events were identified in 1965, 1991, 1997, 2002 and 2010. The event return periods were comparable with return periods from the foothills of the European Alps. A higher frequency of events in the first sub‐catchment may be caused by the presence of a deep‐seated landslide, steeper slopes and a higher susceptibility to shallow slope deformations. Different spatial patterns of events were presented using the Kernel Density analysis in ArcMap 10.1. Clusters of affected trees in the valley floor during the last decades may be due to increased erosion below the check dams and increased accumulation above. The presence of check dams and slope stabilization works since the 1960s has mitigated the processes in several gullies, but due to the current non‐interventional management, the risk of their damage is increasing, particularly when increased activity is observed in the adjacent unprotected gullies.  相似文献   

2.
Long‐term observations of partly debris‐covered glaciers have allowed us to assess the impact of supra‐glacial debris on volumetric changes. In this paper, the behaviour of the partially debris‐covered, 3.6 km2 tongue of Pasterze Glacier (47°05′N, 12°44′E) was studied in the context of ongoing climate changes. The right part of the glacier tongue is covered by a continuous supra‐glacial debris mantle with variable thicknesses (a few centimetres to about 1 m). For the period 1964–2000 three digital elevation models (1964, 1981, 2000) and related debris‐cover distributions were analysed. These datasets were compared with long‐term series of glaciological field data (displacement, elevation change, glacier terminus behaviour) from the 1960s to 2006. Differences between the debriscovered and the clean ice parts were emphasised. Results show that volumetric losses increased by 2.3 times between the periods 1964–1981 and 1981–2000 with significant regional variations at the glacier tongue. Such variations are controlled by the glacier emergence velocity pattern, existence and thickness of supra‐glacial debris, direct solar radiation, counter‐radiation from the valley sides and their changes over time. The downward‐increasing debris thickness is counteracting to a compensational stage against the common decrease of ablation with elevation. A continuous debris cover not less than 15 cm in thickness reduces ablation rates by 30–35%. No relationship exists between glacier retreat rates and summer air temperatures. Substantial and varying differences of the two different terminus parts occurred. Our findings clearly underline the importance of supra‐glacial debris on mass balance and glacier tongue morphology.  相似文献   

3.
On the basis of a space–time substitution, rates of cliff retreat and talus development overthe pasttens ofthousands of years were quantified for valley‐side slopes along the Shomyo River with a known rate of waterfall recession. Detailed profiles of the valley‐side slopes were obtained at 19 sites along the river by map reading and field survey, and the morphologic characteristics of the slopes were then measured. By combining the locations of the slopes with the recession rate of Shomyo Falls, it is estimated that the growth rate of the talus slope is 3.9–7.2 mm/yr, the rate of decline of the cliff is 2.0–4.0 × 10?4 deg/yr, and the retreat rate of the cliff top is 6.2–11.6 mm/yr.  相似文献   

4.
Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt‐hammer exposure‐age dating (SHD). The patterned ground surfaces exhibit R‐value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R‐values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early‐Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late‐Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large‐scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non‐climatic factors.  相似文献   

5.
Through changing soil thermal regimes, soil moisture and affecting weathering and erosion processes plants can have an important effect on the physical properties and structure of soils. Such physical soil changes can in turn lead to biological facilitation, such as vegetation‐banked terrace formation or differential seedling establishment. We studied the fine scale variability in soil temperature and moisture parameters, specifically focusing on frost cycle characteristics around cushions of the dominant, vascular plant species, Azorella selago, on sub‐Antarctic Marion Island. The frost season was characterised by numerous low intensity and very shallow frost cycles. Soils on eastern cushion sides were found to have lower mean and maximum temperatures in winterthan soils on western cushion sides. In addition, lower variability in temperature was found on eastern cushion sides in winterthan on western cushion sides, probably as a result of higher wind speeds on western cushion sides and/or eastern, lee‐side snow accumulation. Despite the mild frost climate, extensive frost heave occurred in the study area, indicating that needle ice forms at temperatures above ?2°C. Our results demonstrate the effectiveness of frost pull as a heave mechanism under shallow frost conditions. The results highlight the importance of Azorella cushions in modifying site microclimates and of understanding the consequences of these modifications, such as potentially providing microhabitats. Such potential microhabitats are particularly important in light of current climate change trends on the island, as continued warming and drying will undoubtedly increase the need for thermal and moisture refugia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号