首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The densities of pits made by goannasVaranus gouldiiwere estimated in the three distinct zones of banded mulga landscapes (erosion slope, interception zone, and mulga grove) in paddocks of a grazing study in north-western New South Wales, Australia. In light and moderately grazed paddocks, soil pits were significantly more abundant in the interception zones (M=119.057 m−2) than in the groves and erosion slopes (M=16.057 m−2). In the overgrazed paddock there were no differences in densities of pits in any of the zones. In the groves and erosion slopes approximately 70-80% of the pits contained litter, seeds, and fruits. However, on the erosion slopes less than 20% of the pits contained litter and seeds. The data support the hypothesis that soil disturbance byVaranuslizards produces a positive feedback mechanism for the viability of the interception zone and the functioning of banded vegetation landscapes.  相似文献   

2.
Distinct rock fragment displacements occur on the ambas, or structurally determined stepped mountains of the Northern Ethiopian Highlands. This paper describes the rock fragment detachment from cliffs by rockfall, quantifies its annual rate, and identifies factors controlling rock fragment movement on the scree slopes. It further presents a conceptual model explaining rock fragment cover at the soil surface in these landscapes. In the May Zegzeg catchment (Dogu'a Tembien district, Tigray), rockfall from cliffs and rock fragment movement on debris slopes by runoff and livestock trampling were monitored over a 4-year period (1998–2001). Rockfall and rock fragment transport mainly induced by livestock trampling appear to be important geomorphic processes. Along a 1500-m long section of the Amba Aradam sandstone cliff, at least 80 t of rocks are detached yearly and fall over a mean vertical distance of 24 m resulting in a mean annual cliff retreat rate of 0.37 mm y− 1. Yearly unit rock fragment transport rates on scree slopes ranged between 23.1 and 37.9 kg m− 1 y− 1. This process is virtually stopped when exclosures are established. Corresponding mean rock fragment transport coefficients K are 32–69 kg m− 1 y− 1 on rangeland but only 3.9 kg m− 1 y− 1 in densely vegetated exclosures. A conceptual model indicates that besides rockfall from cliffs and argillipedoturbation, all factors and processes of rock fragment redistribution in the study area are of anthropogenic origin.  相似文献   

3.
Though relationships between urbanization and tree cover are generally well studied, the effect of redevelopment on urban trees, at the scale of the individual property, is not well understood. Developing knowledge in this area is important in order to limit tree loss during redevelopment and thus, ensure sustained ecosystem services. Here, we explore the removal or retention of trees adjacent to building demolition in Christchurch, New Zealand. We mapped the presence or absence of individual trees on 123 properties prior to, and following, building demolition. Using a classification tree (CT) analysis, the presence or absence of 1209 trees was modelled as a function of: tree-related variables, property-related variables, and economic variables. The CT model estimated tree presence/absence with overall accuracy of 80.4%. Results show that 21.6% of all trees were removed as a consequence of building demolition, resulting in a tree canopy cover reduction of 19.7% across all 123 properties. The CT showed that tree crown area was the most important variable for predicting the presence/absence of trees, whereby trees with small crown areas (<7.9 m2) were most frequently removed, especially if they were within 0.7 m of a demolished building. Land value was also an important determinant of tree presence/absence, such that tree removal was more prevalent on properties with higher land value ($/m2). The results provide important new insights into some of the reasons for tree removal or retention during redevelopment at the scale of the individual property where most tree-related decisions are made.  相似文献   

4.
Domestic grazing animals that congregate around watering points in arid rangelands create clearly-defined trampling-induced grazing gradients. Grazing and trampling alter soil and vegetation condition, often leading to substantial reductions in ecological function. We measured foraging pits and mounds created by native soil foraging animals over 12 months at three watering points in a Chihuahuan Desert grassland, and hypothesized that the density and cover of their disturbances would increase with increasing distance from water. We recorded an average of 3756 disturbances ha−1 and cover of 34.18 m2 ha−1 across the grazing gradients, which comprised mainly pits (43%) and mounds (25%) of heteromyid rodents, ants and spiders. Soil turnover was estimated at 1.43 m3 ha−1. We detected no differences in density, cover, soil volume or composition of disturbances in relation to distance from water, but there were significant, though ill-defined, differences across the five sampling periods, with generally more activity in the warm–wet months. Small animal-created mounds and pits are important sources of soil and sinks for litter within grazing gradients, and may represent the only sites where plants can establish given a relaxation in grazing pressure.  相似文献   

5.
A rootplate/mound formed by the uprooting of a black cherry tree (Prunus serotina) in Potter County, Pennsylvania, was photographed in 1950 near the time of formation and again in 1952 and 1963 by J.C. Goodlett and C.S. Denny. The mound was located and photographed by the author in 1989 with the aid of background trees with identifying peculiarities and using the earlier consistent perspectives. Between 1950 and 1963 most of the rootmass had decomposed, leaving a mound with an estimated volume of 5.28 m3 in 1963. By 1989 the mound had lost 60% of its 1963 height and its volume had diminished to 2.09 m3. Mean annual erosion on the mound from 1989 to 1995 was much less than during the 1963–1989 period indicating a diminishing sediment contribution to the forest floor commensurate with lowering of the mound surface.  相似文献   

6.
Present status and variations in the Arctic energy balance   总被引:1,自引:1,他引:0  
The total solar irradiance (TSI, or solar constant) acquired a new value: 1361 W m?2 instead of 1365 W m?2. However a long-term variation of TSI was not detected. The solar irradiance at the earth's surface is considerably smaller (170 W m?2) than previously believed (e.g. 198 W m?2 of IPCC AR4). The previous overestimation is due to the underestimation of the absorption of solar radiation in the atmosphere. The absorption of solar radiation in the atmosphere at about 90 W m?2, or 25–28% of the primary solar radiation from space. The global mean atmospheric downward terrestrial radiation is much larger (345 W m?2) than previously assumed (325 W m?2 of IPCC AR4). The Arctic has regions of negative annual net radiation, a very rare phenomenon on the globe. These regions are the Central Arctic Ocean with its multi-year ice coverage and the accumulation area of the Greenland ice sheet. The energy balance of these regions is presented. Long-wave incoming radiation has been increasing in the Arctic at a rate of 4–5 W m?2/Decade. The Greenland ice sheet exhibits a large vertical difference in net radiation from the ablation area to the dry snow zone in summer. It ranges from 80 W m?2 in the ablation area to 20 W m?2 at the equilibrium line and to 10 W m?2 in the dry snow zone. This gradient determines the melt gradient on the ice sheet, and is mainly caused by the altitude variation in atmospheric long-wave radiation, seconded by the albedo variation. The effect of albedo in summer for various surfaces is discussed. Simulation capabilities of radiation for many GCMs are investigated.  相似文献   

7.
A geomorphological study focussing on slope instability and landslide susceptibility modelling was performed on a 278 km2 area in the Nalón River Basin (Central Coalfield, NW Spain). The methodology of the study includes: 1) geomorphological mapping at both 1:5000 and 1:25,000 scales based on air-photo interpretation and field work; 2) Digital Terrain Model (DTM) creation and overlay of geomorphological and DTM layers in a Geographical Information System (GIS); and 3) statistical treatment of variables using SPSS and development of a logistic regression model. A total of 603 mass movements including earth flow and debris flow were inventoried and were classified into two groups according to their size. This study focuses on the first group with small mass movements (100 to 101 m in size), which often cause damage to infrastructures and even victims. The detected conditioning factors of these landslides are lithology (soils and colluviums), vegetation (pasture) and topography. DTM analyses show that high instabilities are linked to slopes with NE and SW orientations, curvature values between − 6 and − 0.7, and slope values from 16° to 30°. Bedrock lithology (Carboniferous sandstone and siltstone), presence of Quaternary soils and sediments, vegetation, and the topographical factors were used to develop a landslide susceptibility model using the logistic regression method. Application of “zoom method” allows us to accurately detect small mass movements using a 5-m grid cell data even if geomorphological mapping is done at a 1:25,000 scale.  相似文献   

8.
This paper reviews the processes of tree uprooting, examines the classification of pit and mound microtopography and assesses the effects of tree uprooting on soil mixing and genesis. The processes by which soil-horizon clasts are mixed as they slump off the root plate, and the ultimate patterns of soil horizonation within mounds, are primary foci of the paper. Longevity of treethrow mounds can exceed 2000 years, making these landforms more lasting features than is often assumed. Because of their great longevity, the pits and mounds formed by uprooting have lasting effects on soil morphology. Soils of these microsites often classify in different soil orders or suborders than do adjacent, less disturbed soils. The importance of tree uprooting to mass movement processes is examined. In some areas uprooting may be the primary mass wasting mechanism. Nonetheless, estimates of the amount of sediment moved and the net distance of transport vary greatly and may in some cases be overestimated. [Key words: pedoturbation, microtopography, pit/mound topography, mass wasting, geomorphology.]  相似文献   

9.
Forests are highly susceptible to dieback under ongoing climate warming. In degraded forests, dead standing trees, or snags, have become such prominent features that they should be taken into account when setting management interventions. This study investigated (1) the extent and spatial pattern of standing dead stems of Juniperus procera and Olea europaea subsp. cuspidata along an elevational gradient, and (2) the effect of dieback on forest stand structure. We quantified abundance, size, and spatial pattern of tree dieback in 57 plots (50 m × 50 m) established at 100 m intervals along five transects. The snag density and basal area (mean ± SE) of the two species combined were 147 ± 23 stems ha−1 and 5.35 ± 0.81 m2 ha−1, respectively. The percentages of snags were extremely high for both J. procera (57 ± 7%) and O. europaea subsp. cuspidata (60 ± 5%), but showed a decreasing trend with increasing elevation suggesting that restoration is even more urgent at the lower elevations. Snags of the two species accounted for 31 and 45% of total stand density and basal area, respectively. Living stems exhibited truncated inverse-J-shaped diameter and height class distributions, indicating serious regeneration problems of these foundation species in the study area. In addition to direct interventions to assist recruitment of climax tree species, sites with high dieback would probably benefit from snag reduction to prevent fire incidents in the remaining dry Afromontane forests in northern Ethiopia.  相似文献   

10.
The “Ewijkse Plaat” is a floodplain along the Waal River, NL. In 1988, the floodplain was excavated as part of a program for enlargement of the discharge capacity and was assigned as a nature rehabilitation area. This paper describes the combined geomorphological and vegetation evolution of the floodplain until 16 years after the initial excavation using elevation data and data on vegetation structure derived from detailed aerial stereographic imagery. The impact of these processes on flow velocity and water surface elevation was evaluated by using a hydraulic model. Within 16 years, the excavated amount of sediment was redeposited in the area. The dominant geomorphological process after excavation was vertical accretion of the floodplain which resulted in the formation of natural levees. The amount of sedimentation was correlated to the across-floodplain flow (R2 = 0.89). In the research period, 41% of the sedimentation took place during two single major flood events. The creation of pioneer stages by excavation promoted softwood forest establishment, which influenced the sedimentation pattern significantly. The landscape evolved toward structure-rich vegetation. Nine years after excavation the initial hydraulic gain was lost by the combined effect of sedimentation and vegetation succession. Implications for river and nature management are discussed.  相似文献   

11.
In this study, PM10, PM2.5, and PM1 concentrations were measured from April through September 2010. These measurements were made every six days and on days with dust events using a Grimm Model 1.177 aerosol spectrometer. Meteorological data were also collected. Overall mean values of 319.6 ± 407.07, 69.5 ± 83.2, and 37.02 ± 34.9 μg/m3 were obtained for PM10, PM2.5, and PM1, respectively, with corresponding maximum values of 5337.6, 910.9, and 495 μg/m3. The presence of the westerly prevailing wind implied that Iraq is the major source of dust events in this area. A total of 72 dust days and 711 dust hours occurred in the study area. The dust events occurred primarily during July. The longest dust event during the study period occurred in July, lasted five days, and had a peak concentration of 2028 μg/m3. These high concentrations produced AQI values of up to 500. A total estimated mortality and morbidity of 1131 and 8157 cases, respectively, can be attributed to these concentrations. The results of this study indicated the importance of dust events in Ahvaz and their possible health impacts. The study also demonstrated the need to design and implement intergovernmental management schemes to effectively mitigate such events.  相似文献   

12.
Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator were used to calculate C densities, mean annual precipitation (MAP) and mean annual temperature (MAT). Above-ground biomass C and soil organic carbon (SOC, 1 m) densities averaged 112 and 5453 g C m−2, respectively. Below-ground biomass C densities, estimated using root shoot ratios, averaged 33 g C m−2. Biomass C densities and MAP increased southwards across the region while SOC densities were lowest in the centre of the region and increased westwards and eastwards. Both above-ground biomass C and SOC densities were significantly (p < 0.05) correlated with MAP (rs = 0.84 and rs = 0.34, respectively) but showed non-significant correlations with MAT (rs = −0.22 and rs = 0.24, respectively). SOC densities were significantly correlated with biomass C densities (rs = 0.34). The results indicated substantial under stocking of trees and depletion of SOC, and potential for C sequestration. Up-to-date regional and integrated soil and forest inventories are required for planning improved land-use management and restoration.  相似文献   

13.
Vishwas S. Kale   《Geomorphology》2007,85(3-4):306
The efficacy of extreme events is directly linked to the flood power and the total energy expended. The geomorphic effectiveness of floods is evaluated in terms of the distribution of stream power per unit boundary area (ω) over time, for three very large floods of the 20th Century in the Indian Peninsula. These floods stand out as outliers when compared with the peak floods per unit drainage area recorded elsewhere in the world. We used flood hydrographs and at-a-station hydraulic geometry equations, computed for the same gauging site or a nearby site, to construct approximately stream-power curves and to estimate the total energy expended by each flood. Critical unit stream power values necessary to entrain cobbles and boulders were estimated on the basis of empirical relationships for coarse sediment transport developed by Williams [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] in order to determine the geomorphological effectiveness of the floods. The estimates indicate that the minimum power per unit area values for all three floods were sufficiently high, and stream energy was above the threshold of boulder movement (90 W m− 2) for several tens of hours. The peak unit stream power values and the total energy expended during each flood were in the range of 290–325 W m− 2 and 65–160 × 106 J respectively. The average and peak flood powers were found to be higher or comparable to those estimated for extreme palaeo or modern floods on low-gradient, alluvial rivers.  相似文献   

14.
At the beginning of December 2003, one of the biggest floods for at least 150 yr was recorded on the Rhone River. In the lower part of the river, the peak flood reached 11,000 m3 s−1. The geomorphological and radioecological consequences of such an event were investigated downstream all the nuclear installations by using measured and calculated fluxes and the total export of suspended sediment and associated 137Cs. Results pointed out the major role played by large floods in the annual suspended sediment load, as 3.70 × 106 tons of silts, 0.85 × 106 tons of sands, and 0.84 × 106 tons of clays were transferred towards the coastal environment. Nevertheless, these solid loads were found to be lower than those expected as regards the liquid discharge reached during this event and suggested that previous floods that occurred on the river and on its main tributaries during the last decade have probably led to the removal of available sediment from the channels and their banks. Besides, the 137Cs activity measured within the suspended load was estimated at 14.9 ± 0.4 Bq kg−1, which is a level characteristic of the suspended sediments from the Rhone catchment area and demonstrated that nuclear installations located along the Rhone valley did not significantly contribute to any increase in 137Cs activity in the water during the flood. The total 137Cs particulate export amounted to 77 ± 17 GBq and was mainly associated with the silt fraction that contributes to around 70% of the total 137Cs export.  相似文献   

15.
Spectroradiometer measurements of solar radiation (the broadest band used 400–900 nm) were performed above and inside the surface snow layer in western Dronning Maud Land, Antarctica, during the austral summer of 2009–2010. The vertical distributions of transmittance and the extinction coefficient were examined from the surface to a depth of 30 cm. Physical characterization of the snowpack included measurements of thickness, density, hardness (hand test), liquid-water content, and grain size and shape (from photographs of grains). The transmittance was <1% in the upper 20 cm and <27% in the upper 10 cm. The mean spectral diffuse extinction coefficient varied between 0.04 and 0.31 cm-1 (10–20-cm layer). Using the spectral extinction coefficients of the 0–10-cm and 10–20-cm layers, the depth, where broadband (400–700-nm band) irradiance was 1% of the downwelling irradiance at the surface, was 50 cm. The density of the snow in the upper part of the snowpack (depth of 0–55 cm) varied from 300 to 440 kg m?3. The predominant grain type was large rounded particles (RGlr) and the predominant grain size was 1 mm.  相似文献   

16.
The morphology of step-pools and cascades reflect the geological and climatic factors affecting channels in mountain watersheds. This study uses longitudinal and cross-section surveys to describe a headwater stream in the Boston Mountains of the Ozarks Plateau region in Arkansas and develop morphological relationships for comparisons with other regions. In the Bowers Hollow Creek watershed (3.5 km2), located within the boundaries of the Upper Buffalo Wilderness Area, step height and wavelength relationships are generally similar to those reported from other regions. Step-pool reaches were widely distributed in a discontinuous manner throughout the watershed. Average values of the sampled reaches are: reach slopes, 0.105 m/m; width, 6.10 m; crest particle sizes, 440 mm; step heights, 0.87 m; and step wavelengths, 6.62 m. The mean step steepness for the watershed was 0.13, whereas the mean length of a reach step to height ratio was 9:1. A comparison of morphological definitions found that the values of step height and steepness can vary by > 30% according to how step parameters are defined. Step height is particularly sensitive; thus, comparison of step height-based relationships from published data requires great care.  相似文献   

17.
The northern coastal part of Korinthia prefecture can be characterized as an agrotourism center that has grown and urbanized rapidly. The area is formed of recent unconsolidated material consisting of sands, pebbles, breccias and fine clay to silty sand deposits. These deposits host the main aquifer system of the area, which depends on groundwater as a water resource. Groundwater is the main source for irrigation in the area. A total water volume of 29.2×106–34.3×106 m3 yr−1 was estimated to recharge the aquifer system from direct infiltration of rainfall, streambed infiltration, irrigation return, artificial recharge via flood irrigation and lateral subsurface inflows. The present annual abstraction ranges between 39.2×106 and 44.6×106 m3 yr−1. Groundwater abstraction in dry years exceeds renewable freshwater resources by more than 38%. Approximately 79% of the total abstraction is consumed for agriculture supply. Water balance in the coastal aquifer system is in disequilibrium; a deficit, which ranges from 4.9×106 to 15.4×106 m3 yr−1 exists. The safe yield of the coastal aquifer system has been estimated at 37.1×106 m3 yr−1 for normal hydrological year and 32×106 m3 yr−1 for severely dry hydrological year. The total abstraction is greater than the recharge and the safe yield of the aquifer. The aquifer system has shown signs of depletion, seawater intrusion and quality contamination. The integrated water resources management, securing water in the future, should include measures that augment groundwater budget in the coastal aquifer of the study area.  相似文献   

18.
The central area of the Russian Plain received substantial amounts Cs-137 fallout as a result of the Chernobyl accident in 1986, with inventories exceeding 40 kBq m−2 in many of the areas close to Chernobyl. Concern over the longer-term fate of this contamination has focused attention on the need to predict the post-fallout redistribution of the radiocaesium and, thus, future changes in the spatial distribution of contamination in the landscape. Since radiocaesium reaching the land surface as fallout is rapidly and strongly adsorbed by soil and sediment particles, any attempt to predict its post-fallout redistribution must focus on erosion and sediment delivery processes and must rely heavily on a knowledge of the geomorphological processes involved. This paper reports a detailed investigation of post-fallout Cs-137 redistribution in the 2.18-km2 Lapki catchment in the Middle-Russian Upland, which has required consideration of soil erosion processes, sediment delivery pathways, sediment delivery ratios and sediment sinks. The time elapsed since the Chernobyl accident is currently insufficient to result in significant reduction of Cs-137 inventories in eroding areas, but areas of deposition on both the lower slopes and on the balka sides and bottoms are already marked by significant increases in Cs-137 inventories. The results obtained emphasise that any attempt to develop meaningful predictions of the longer-term redistribution of Chernobyl-derived Cs-137 fallout within the Russian Plain must be based on a sound and detailed understanding of the linkage between the slopes and the balka systems and the fate of sediment entering the balka systems.  相似文献   

19.
The Radicofani Basin, stretching about 30 km NW–SE, is an intra-Central Apennine basin connected to Pliocene–Pleistocene extensional tectonics. It consists of an Early to Middle Pliocene succession including essentially shelf pelites. In the Radicofani area, province of Siena (Tuscany region), morphodynamic processes are very frequent with widespread badlands and rapidly evolving mudflows. In order to evaluate the general instability of the Radicofani area, geological and geomorphological surveys were carried out. The 1954, 1990 and 2003 aerial surveys allowed a comparison of the changes in the various morphological aspects of the study area, which suggested an increase in slope instability with time. A new complex translational landslide evolving into mudflows, activated during the winter of 2003, was monitored using an experimental system based on terrestrial LIDAR (Light Detection and Ranging) and GPS (Global Positioning System) technologies. This system allowed the monitoring of the morphologic and volumetric evolution of the landslide. A comparison of the monitoring data of October 2004, June 2005, May 2006 and May 2007 points out that the evolution is characterised by the sliding of displaced materials. A volume of about 1300 m3 of materials was removed during the period 2004–2005, 300 m3 for 2005–2006, and 400 m3 for 2006–2007. The greater initial mass movement probably reflects a greater static imbalance during the early period of landslide movement and increased rainfall. Therefore, the proposed monitoring system methodology allows the numerical evaluation of the landslide morphological evolution and to validate the landslide evolution model based on geological and geomorphological field surveys.  相似文献   

20.
Using geomorphological knowledge, spatial data and GIS methods, one can obtain phytogeomorphological site variables describing interactions between landforms and vegetation. We used 15 site variables derived from maps to explain forest site productivity in southern and central Finland expressed as dominant height of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) with ages of 30–110 years. These site variables were grouped into two: Group 1 with seven variables describing geographical conditions of sites including climate, and Group 2 with eight variables describing local morphometric and soil properties. We calculated slope and aspect from a 25 × 25 m DEM. The catchment area, calcium content in soil, length of the growing season, radiation index, sea index, lake index, past highest shoreline and total annual temperature sum with threshold + 5 °C were also obtained. Then we classified the landforms of 688 sample plots into four major types and 15 sub-types. We applied regression analysis to explain the tree height as a function of the tree age and the phytogeomorphological site variables. When the tree height was explained with the tree age and the Group 1 variables, the remaining standard error of the model was 16.6–17.9%. When the Group 2 variables were added to the analysis, the standard error decreased slightly. The most significant variables were the temperature sum, latitude coordinate and length of the growing season. Other significant variables were elevation, slope and aspect. The major landform types, sub-types and watershed area did not explain the tree height. Furthermore, if the forest site types determined in the field were included, the remaining standard error decreased by ca. 2%, showing the importance of field information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号