首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The USA Clean Water Act requires the development of a total maximum daily load (TMDL) when Minnesota’s water quality standard for turbidity is exceeded; however, regions underlain with fine-grained lacustrine deposits yield large natural background loads of suspended inorganic sediment. A review of hydrogeologic pathways was conducted along with the statistical analysis of geomorphic metrics, collected at 15 sites with varying drainage areas in the upper Nemadji River basin, northeastern Minnesota. Regression analysis indicated a strong linkage between bankfull cross-sectional area and drainage area. Dimensionless geomorphic metric ratios were developed to predict channel evolution potential and associated channel erosion risk. Sites located in drainage areas less than 2 km2 had low erosion risk and showed a correlation between channel slope and relative roughness (D 84/mean bankfull channel depth, 88%). A principal components analysis explained over 98% of the variance between sites and indicated five important channel shape metrics to predict channel erosion: bankfull width, bankfull depth, maximum depth, cross-sectional area, and valley beltwidth. Mass wasting of cohesive stream channel sediment was influenced by groundwater discharge and produced turbid waters in the upper Nemadji River.  相似文献   

2.
Erosion and sediment redistribution are important processes in landscape changes in the short and long term. In this study, the RMMF model of soil erosion and the SEDD model of sediment delivery were used to estimate annual soil loss and sediment yield in an ungauged catchment of the Spanish Pre-Pyrenees and results were interpreted in the context of the geomorphic features. The Estaña Catchment is divided into 15 endorheic sub-catchments and there are 17 dolines. Gullies and slopes were the main erosive geomorphic elements, whereas the colluvial, alluvial, valley floor, and doline deposits were depositional elements. Spatially distributed maps of gross soil erosion, sediment delivery ratio (SDR), and sediment yield (SY) were generated in a GIS. Severe erosion rates (>100 Mg ha?1 year?1) were found in gullies, whereas mean and maximum erosion rates were very high on slopes developed on Keüper Facies and high in soils on Muschelkalk Facies. Where crops are grown, the depositional-type geoforms were predicted by the models to have an erosive dynamic. Those results were consistent with the rates of erosion quantified by 137Cs which reflects the significant role of human activities in triggering soil erosion. Catchment area was positively correlated with erosion rate, but negatively correlated with SDR and SY. The latter were negatively correlated with the proportion of the surface catchment covered with forests and scrublands. The topography of the area influenced the high SDR and SY in the dolines and valley floors near the sinks. Intra-basin stored sediment was 59.2% of the total annual eroded soil in the catchment. The combination of the RMMF and SEDD models was an appropriate means of assessing the effects of land uses on soil erosion and obtaining a better understanding of the processes that underlie the geomorphic changes occurring in mountainous environments of the Mediterranean region.  相似文献   

3.
Watershed management and headwater reconstruction programs require a reliable knowledge of sediment dynamics. Geographical Information Systems (GIS) provide the framework for the implementation of different complex techniques for the assessment of shallow landsliding and erosion processes in mountain basins. This paper presents some morphometric indicators aimed at erosion and sediment delivery analysis. The proposed indicators can be easily derived from medium to fine resolution Digital Elevation Models (DEM). Applications conducted in Eastern Italian Alps have shown the adequateness of the proposed approach to address erosion and sediment-related problems. The analysis considered the classification of sediment source areas with regard to their activity, the comparison between drainage basins having different morphological characteristics and the topographic control on sediment transport capacity, with a particular attention to the identification of channel reaches characterised by a low sediment transport capacity.  相似文献   

4.
陕北风沙区含砾石工程堆积体坡面产流产沙试验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用室内人工模拟降雨方法,研究了陕北风沙区含砾石工程堆积体边坡的产流产沙过程。结果表明:①砾石存在改变了坡面入渗速率,径流系数受入渗速率的影响,随砾石含量的增加先线性递减后线性递增,并在10%砾石含量处存在阈值;径流系数随降雨强度的增加线性递增。②含砾石堆积体坡面流速较纯土堆积体降低,且随雨强增大,砾石延缓径流流动的作用越显著;雨强对径流流速的影响随砾石含量增加持续减弱。③土壤剥蚀率在产流24~33 min后显著增加,砾石主要对显著增加后的平均剥蚀率产生影响。④雨强1.0 mm/min时,砾石存在促进降雨侵蚀,产沙量增大;雨强大于1.0 mm/min时,砾石具有显著的减沙效应。  相似文献   

5.
The morphometric analysis of river basins represents a simple procedure to describe hydrologic and geomorphic processes operating on a basin scale. A morphometric analysis was carried out to evaluate the drainage characteristics of two adjoining, mountain river basins of the southern Western Ghats, India, Muthirapuzha River Basin (MRB) in the western slopes and Pambar River Basin (PRB) in the eastern slopes. The basins, forming a part of the Proterozoic, high-grade, Southern Granulite Terrain of the Peninsular India, are carved out of a terrain dominantly made of granite- and hornblende-biotite gneisses. The Western Ghats, forming the basin divide, significantly influences the regional climate (i.e., humid climate in MRB, while semi-arid in PRB). The Survey of India topographic maps (1:50,000) and Shuttle Radar Topographic Mission digital elevation data were used as the base for delineation and analysis. Both river basins are of 6th order and comparable in basin geometry. The drainage patterns and linear alignment of the drainage networks suggest the influence of structural elements. The Rb of either basins failed to highlight the structural controls on drainage organization, which might be a result of the elongated basin shape. The irregular trends in Rb between various stream orders suggest the influence of geology and relief on drainage branching. The Dd values designate the basins as moderate- to well-drained with lower infiltration rates. The overall increasing trend of Rl between successive stream orders suggests a geomorphic maturity of either basins and confirmed by the characteristic I hyp values. The Re values imply an elongate shape for both MRB and PRB and subsequently lower vulnerability to flash floods and hence, easier flood management. The relatively higher Rr of PRB is an indicative of comparatively steeply sloping terrain and consequently higher intensity of erosion processes. Further, the derivatives of digital elevation data (slope, aspect, topographic wetness index, and stream power index), showing significant differences between MRB and PRB, are useful in soil conservation plans. The study highlighted the variation in morphometric parameters with respect to the dissimilarities in topography and climate.  相似文献   

6.
In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin (WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index (NDVI) data from Global Inventory Modeling and Mapping Studies (GIMMS) or Advanced Very High Resolution Radiometer (AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method.  相似文献   

7.
Previous studies lack proper and quick assessment of sediment yield rates in arid regions. Sediment yield at a point along the main channel of a drainage basin is an integrated result of upland, gully, and channel erosion, transportation, and depositional processes. The external dynamic agents of sediment yield are water, wind, gravity, temperature change, ice, and biological activities. Although each may be important in arid regions, at locations, occasionally present-day hydrological cycle works water are the most widespread agent of erosion and account for the bulk of sediment yield. This paper focuses on sediment yield formulations in arid regions in terms of little morphology in addition to the runoff discharge after a storm rainfall. Among the morphological variables are the drainage basin area, main channel slope, and the drainage density. Hence, the channel head is represented by the combination of drainage area and the slope. The emphasis is given to the determination of simple and straightforward sediment yield rate formulations by dimensional analysis technique. Three simple formulations are derived, and two of them are applied to one of the largest wadis, Wadi Baysh, with its 54 sub-basins, in the southwestern Saudi Arabia.  相似文献   

8.
西南喀斯特区土层浅薄、成土速率低等特点决定了其允许土壤流失量小,土壤一旦流失,极难恢复,土壤侵蚀及其造成的石漠化现象已成为制约该区可持续发展最严重的生态环境问题。文章首先明晰西南喀斯特区土壤侵蚀特征,从坡面、小流域和区域三个尺度上系统概括西南喀斯特区土壤侵蚀的相关研究进展。针对当前喀斯特区土壤侵蚀研究野外径流小区、小流域及区域空间尺度数据缺少和相关研究模型限制性强等不足,建议从不同尺度深入研究喀斯特区土壤侵蚀发生发展规律及时空演化格局,并结合高新遥感、地球物理探测技术及模型,同步监测坡面—小流域—区域土壤流失,对土壤侵蚀进行定量评估,结合不同空间尺度土壤侵蚀特征构建系统性水土保持生态恢复治理模式和监测系统评价体系。   相似文献   

9.
Suspended sediment concentration is a major variable influencing soil erosion and loss, study on which at different spatial scales is of great meaning to understand soil erosion mechanism and sediment transport process. Based on data from 4 sloping surfaces and 7 basins ranging from 0.0003 to 187 km2 in area, the suspended sediment concentration in flood season (SSC) with drainage area is studied. With increasing drainage area on the slope surfaces, the mean suspended sediment concentration in flood season (MSSC) enhances continuously until a peak value of 685 kg m−3 occurs at the whole slope surface No. 7 runoff plot resulting from harder and harder erosion forms downslope. Entering basin systems, the diluted action of subsurface water on the toeslope on MSSC and small water flow power Ω make a minimum MSSC value of 568 kg m−3 occur in the first-order basin system Tuanshangou basin at an area of 0.18 km2, and then from Tuanshangou basin to larger basins, the positive feedback function among drainage density, water flow energy, and hyperconcentrated flow as well as its reduction of settling velocity of coarser particles generates continuously increasing MSSC with drainage area.  相似文献   

10.
Sediment discharge due to soil and rock erosion within the watersheds is the major cause of siltation in water reservoirs. Siltation in reservoirs reduces the capacity for power production, irrigation water supply, and other domestic purposes. Hypsometric analysis has widely been used to identifying the geomorphic development stages (stabilized, equilibrium, and un-stable) to assess the erosion proneness of watersheds. In this study, watershed of Kurram Tangi Dam and its four sub-watersheds (SWs) were considered to determine their sediment discharge capacity through hypsometric analysis. The boundaries of watershed and sub-watersheds were delineated from Digital Elevation Model (DEM). The hypsometric parameters i.e., hypsometric integral (HI) and curves were generated using Geographic Information System (GIS) techniques. The HI values of SW-1 (0.41) and SW-2 (0.36) indicated that these two SWs were relatively more prone to erosion and contributed higher sediment discharge in Dam siltation. The results were validated through sampling the main drainage channel (Kurram River) to determine the sediment concentration at 12 sites during summer, winter, and spring seasons. Comparison of HI and sediment concentration of SWs presented high correlation (R2?=?0.87). The results emphasized the effective watershed management, extensive afforestation, and construction of silt-control structures at appropriate locations in sub-watersheds. This will ultimately maintain the water and power generation capacity as well as extending the life span of the Dam.  相似文献   

11.
This study was taken up to investigate the effects of landscape patterns on the soil erosion processes in a mountain–basin watershed. The revised universal soil loss equation and sediment delivery distribution models were used to estimate the soil erosion processes. The landscape patterns include the landscape metrics at the landscape level, landscape composition and configuration indicators on the basis of source–sink landscape theory. In the study area, the grassland, bare land, farmland and construction land were the sediment-source landscape; the forest and shrub were the sediment-sink landscape. The correlation analysis results showed that the soil erosion processes were significantly associated with the landscape patterns of the study area. At the landscape level, fragmentation metric was positively correlated with soil erosion; diversity metric was negatively related to soil erosion and sediment yield at the sub-basin scale. Among the source–sink landscape composition and configuration indicators, the composition indicator was positively correlated with soil erosion rate and sediment yield. In the configuration landscape indices, the shape index was negatively correlated with soil erosion rate and sediment yield; the fragmentation index was positively correlated with soil erosion rate and negatively correlated with sediment delivery rate. These results indicated that the optimization measures, such as increase in the area, connectivity and regularity of sediment-sink landscape, or decrease in the proportion, connectivity and regularity of sediment-source landscape, were favorable for soil conservation. Furthermore, the landscape indicators based on the source–sink theory could provide more information for landscape pattern optimization to reduce soil erosion.  相似文献   

12.
Planning of soil conservation and erosion control schemes to minimize downstream effects requires information on the sources of sediment supply to a river system. A survey technique for providing an inventory of sediment sources has been developed in New Zealand; sediment sources are classified in terms of geomorphic type and degree of activity (severity). The technique is qualitative but is of value for both planning and research because it demands a formal, objective examination of the area under study. In the Harper-Avoca watershed the technique demonstrated that some well-established beliefs regarding the supply of sediment to the river systems might be erroneous; sediment supply appears to be controlled primarily by geomorphic and geologic factors, and human interference with the ecosystem probably has had a minor effect on rates of supply. The bulk of the sediment comes from large, natural features that are beyond present erosion-control technology, whereas those features that could be effectively treated supply a relatively small proportion of the river's total sediment load.  相似文献   

13.
In situ-produced cosmogenic nuclides provide a means for quantitative evaluation of a wide range of weathering and sediment transport processes. Although these nuclides have received attention for their power as geochronometers of surface exposure, it may be argued that they are more broadly suited for study of surface processes. In many environments, they may be used to evaluate collapse, erosion, burial, bioturbation, and creep, as well as providing a qualitative basis for distinguishing allochthonous from autochthonous materials. In addition, these nuclides can provide quantitative information on rates of erosion on scales of landforms and drainage basins. Here, we review the systematics of cosmogenic nuclide production within the Earth's surface, and present field examples demonstrating the utilization of in situ-produced cosmogenic nuclides distributions for evaluation of a range of soil evolution processes. To cite this article: E.T. Brown et al., C. R. Geoscience 335 (2003).  相似文献   

14.
Understanding the geomorphic history of eolian basins is important in interpreting the archaeological record and human responses to past environments. One hundred forty soil profiles were excavated and described in southern New Mexico and West Texas. Seven major late Quaternary stratigraphic units were found: La Mesa, eolian Jornada (I, II), eolian Isaacks' Ranch, eolian Organ (I, II, and III), Historical Blowsand, and the playa deposits of Petts Tank and Lake Tank. Each unit represents a period of landscape instability, eolian erosion, and concurrent deposition, followed by landscape stability and soil formation. Eolian erosion can form local surficial lag deposits if materials larger than the competence of the wind are present. However, erosional processes alone cannot explain the presence of older clasts at the surface with intact, younger deposits underneath. We propose a combination of processes: deflation in eolian windows, followed by lateral movement of clasts over areas that have not been deflated. The effects of these processes on artifact stratigraphy and archaeological interpretations could be significant. © 2002 Wiley Periodicals, Inc.  相似文献   

15.
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events.  相似文献   

16.
Storms have long been recognized as agents of geomorphic change to coastal wetlands. A review of recent data on soil elevation dynamics before and after storms revealed that storms affected wetland elevations by storm surge, high winds, and freshwater flushing of the estuary (inferred). The data also indicate that measures of sediment deposition and erosion can often misrepresent the amount and even direction of elevation change because of storm influences on subsurface processes. Simultaneous influence on both surface and subsurface processe by storms means that soil elevation cannot always be accurately estimated from surface process data alone. Eight processes are identified as potentially influencing soil elevation: sediment deposition, sediment erosion, sediment compaction, soil shrinkage, root decomposition (following tree mortality from high winds), root growth (following flushing with freshwater, inferred), soil swelling, and lateral folding of the marsh root mat. Local wetland condition (e.g., marsh health, tide height, groundwater level) and the physical characteristics of the storm (e.g., angle of approach, proximity, amount of rain, wind speed, and storm surge height) were apparently important factors determining the storm's effect on soil elevation. Storm effect on elevation were both permanent (on an ecological time scale) and short-lived, but event short-term changes have potentially important ecological consequences. Shallow soil subsidence or expansion caused by a storm must be considered when calculating local rates of relative sea level rise and evaluating storm effects on wetland stability.  相似文献   

17.
Turbid-water problem of reservoirs due to soil erosion causes a major issue in dam operation. This study presents a methodology to quantitatively analyze the occurrence possibility of turbid-water in four hydrologic basins (Sayeon, Degok, Gwangdong, and Imha Dam basins in S. Korea), quantifying the weighting value of turbid-water occurrence in reservoirs. To do this, the study conducted indoor tests, including laser-assisted particle size analysis, X-ray powder diffraction method analysis, and scanning electron microscope, to give the geologic characteristics such as the distribution of soil particle size, settlement time, landslide, and existing sediment yield. The study used RUSLE models to calculate sediment yield on the basis of soil maps, DEMs, and landcover maps as auxiliary data. This study classified factors for evaluating the possibility of turbid-water occurrence into geology, sediment yield, landslide and soil components, and these evaluation items’ weighting and score are presented using the analytic hierarchy process technique. The suggested method is promising in that it can analyze the risk factor of turbid-water occurrence in basins and that can provide a guideline to estimate the turbid-water occurrence of reservoir in dam construction.  相似文献   

18.
 The morphological evolution, hydrodynamics and sediment dynamics of the lower Ebro are studied from historical and current data in order to determine the main changes that have governed the evolution of the Ebro channel near the river mouth during the last few centuries. The evolution of the mouth of this river during the last 2000-years, from an estuary to a delta, is interpreted as a process that has been accelerated by human land management. However, an inverse trend has been observed during recent decades: (1) the river mouth has been affected by erosion due to a drastic decrease in the river sediment discharge, and (2) the lower Ebro tends to evolve towards a quasi-permanent salt-wedge estuary as a consequence of the decrease in the river water discharge. Freshwater and sediment discharge decreases are mainly related to intense river water management during this century. The salt wedge favours erosion in the river banks, widening the river channel and causing an aggradational trend in the lower Ebro. Accretion-erosion rates and the sediment budget in the river mouth are estimated for different conditions. Received: 13 November 1995 · Accepted: 17 June 1996  相似文献   

19.
Increasing rainfall intensity and frequency due to extreme climate change and haphazard land development are aggravating soil erosion problems in Korea. A quantitative estimate of the amount of sediment from the catchment is essential for soil and water conservation planning and management. Essential to catchment-scale soil erosion modeling is the ability to represent the fluvial transport system associated with the processes of detachment, transport, and deposition of soil particles due to rainfall and surface flow. This study applied a spatially distributed hydrologic model of rainfall–runoff–sediment yield simulation for flood events due to typhoons and then assessed the impact of topographic and climatic factors on erosion and deposition at a catchment scale. Measured versus predicted values of runoff and sediment discharge were acceptable in terms of applied model performance measures despite underestimation of simulated sediment loads near peak concentrations. Erosion occurred widely throughout the catchment, whereas deposition appeared near the channel network grid cells with a short hillslope flow path distance and gentle slope; the critical values of both topographic factors, providing only deposition, were observed at 3.5 (km) (hillslope flow path distance) and 0.2 (m/m) (local slope), respectively. In addition, spatially heterogeneous rainfall intensity, dependent on Thiessen polygons, led to spatially distinct net-erosion patterns; erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall.  相似文献   

20.
The karst area of Southwest China is suffering from serious ecological and environmental problems due to soil erosion while the research on soil erosion is not sufficient. Primary achievement was systematically reviewed in this paper in three aspects: erosion characteristics, current researches about erosion on different spatial scales, and key scientific problems. Based on the review, the authors figured out the shortcomings of the existing studies and pointed out the directions on erosion study in southwest China karst region. The results showed that: ① Due to the existence of a dual structure in karst environment including ground and underground erosion, the process of runoff and sediment production on slope scale and confluence and sediment transportation processes on catchment scale were more complex under the unique geological and hydrological backgrounds; ② At present, most researches about erosion mechanism in karst area focus on slope scale and some achievements on quantitative evaluation of erosion factors have been made. Continuous data with high quality about relationship between water and sediment on catchment scale is limited. When data is scarce, river sediment data can be used as an effective way to study soil erosion intensity and spatial-temporal variation in karst area; ③ It is more reasonable to use 50 t/(km2·a) as the grading standard of soil loss tolerance than the previous grading standard of soil erosion intensity. Given the complex relationship between rocky desertification and soil erosion, more quantitative studies about the effects of rocky desertification on soil erosion are still necessary. There are different viewpoints on soil leakage definitions, leakage mechanism and leakage ratios, and new breakthroughs could be achieved by combining different methods and matching multi-scales. In conclusion, in order to further reveal soil erosion laws and establish and revise available regional soil erosion forecasting models for Southwest China karst areas, synchronous test and monitoring on slope, watershed, and channel spatial scales are urgently needed. The results can provide theoretical and technical support for promoting soil and water conservation work for the karst area of Southwest China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号