首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High-redshift submillimetre-bright galaxies identified by blank field surveys at millimetre and submillimetre wavelengths appear in the region of the Infra Red Array Camera (IRAC) colour–colour diagrams previously identified as the domain of luminous active galactic nuclei (AGNs). Our analysis using a set of empirical and theoretical dusty starburst spectral energy distribution (SED) models shows that power-law continuum sources associated with hot dust heated by young (≲100 Myr old), extreme starbursts at z > 2 also occupy the same general area as AGNs in the IRAC colour–colour plots. A detailed comparison of the IRAC colours and SEDs demonstrates that the two populations are distinct from each other, with submillimetre-bright galaxies having a systematically flatter IRAC spectrum (≳1 mag bluer in the observed [4.5]–[8.0] colour). Only about 20 per cent of the objects overlap in the colour–colour plots, and this low fraction suggests that submillimetre galaxies powered by a dust-obscured AGN are not common. The red infrared colours of the submillimetre galaxies are distinct from those of the ubiquitous foreground IRAC sources, and we propose a set of infrared colour selection criteria for identifying SMG counterparts that can be used even in the absence of radio or Multiband Imaging Photometer for Spitzer (MIPS) 24 μm data.  相似文献   

3.
We present the K -band Hubble diagrams ( K – z relations) of submillimetre-selected galaxies and hyperluminous galaxies (HLIRGs). We report the discovery of a remarkably tight K – z relation of HLIRGs, indistinguishable from that of the most luminous radio galaxies. Like radio galaxies, the HLIRG K – z relation at   z ≲ 3  is consistent with a passively evolving ∼3 L * instantaneous starburst starting from a redshift of   z ∼ 10  . In contrast, many submillimetre-selected galaxies are ≳2 mag fainter, and the population has a much larger dispersion. We argue that dust obscuration and/or a larger mass range may be responsible for this scatter. The galaxies so far proved to be hyperluminous may have been biased towards higher AGN bolometric contributions than submillimetre-selected galaxies due to the 60-μm selection of some, so the location on the K – z relation may be related to the presence of the most massive active galactic nucleus. Alternatively, a particular host galaxy mass range may be responsible for both extreme star formation and the most massive active nuclei.  相似文献   

4.
5.
A new model for source counts from 8 to 1100 μm is presented, which agrees well with source-count data and the observed background spectrum. The model assumes different evolution for each of the four infrared template types used. The evolution is modified in two ways compared to my 2001 model: (i) the exponential factor is modified so that it tends to a constant value at late times and (ii) the power-law factor is modified so that it tends to zero at redshift   z f   , rather than zero as assumed previously. I find strong evidence from the 850 and 1100 μm counts, and from the infrared background, that   z f = 4–5  , with some preference for a value at the low end of the range, implying that star-forming galaxies at   z > 5  are not significant infrared emitters, presumably due to a low opacity in dust at these early epochs.
The model involves zero or even negative evolution for starbursts and active galactic nuclei at low redshifts (<0.2), suggesting that the era of major mergers and strong galaxy–galaxy interactions is over.  相似文献   

6.
7.
We present the multiwavelength properties and catalogue of the 15 μm and 1.4 GHz radio sources detected in the European Large Area ISO Survey ( ELAIS ) areas N1 and N2. Using the optical data from the Wide Field Survey we use a likelihood ratio method to search for the counterparts of the 1056 and 691 sources detected at 15 μm and 1.4 GHz, respectively, down to flux limits of   S 15= 0.5 mJy  and   S 1.4 GHz= 0.135 mJy  . We find that ∼92 per cent of the 15 μm ELAIS sources have an optical counterpart down to   r '= 24  . All mid-infrared (IR) sources with fluxes   S 15≥ 3 mJy  have an optical counterpart. The magnitude distribution of the sources shows a well-defined peak at relatively bright magnitudes   r '∼ 18  . The mid-IR-to-optical and radio-to-optical flux diagrams are presented and discussed in terms of actual galaxy models. About 15 per cent of the sources are bright galactic stars; of the extragalactic objects ∼65 per cent are compatible with being normal or starburst galaxies and ∼25 per cent active galactic nuclei (AGNs). Objects with mid-IR-to-optical fluxes larger than 100 are found, comprising ∼20 per cent of the sample. We suggest that that these sources are highly obscured luminous and ultraluminous starburst galaxies and AGNs.  相似文献   

8.
9.
10.
11.
We have carried out targeted submillimetre observations as part of a programme to explore the connection between the rest-frame ultraviolet and far-infrared properties of star-forming galaxies at high redshift, which is currently poorly understood. On the one hand, the Lyman break technique is very effective at selecting     galaxies. On the other, 'blank-field' imaging in the submillimetre seems to turn up sources routinely, amongst which some are star-forming galaxies at similar redshifts. Already much work has been done searching for optical identifications of objects detected using the SCUBA instrument. Here we have taken the opposite approach, performing submillimetre photometry for a sample of Lyman break galaxies, the ultraviolet properties of which imply high star formation rates. The total signal from our Lyman break sample is undetected in the submillimetre, at an rms level of ∼0.5 mJy, which implies that the population of Lyman break galaxies does not constitute a large part of the recently detected blank-field submillimetre sources. However, our one detection suggests that with reasonable SCUBA integrations we might expect to detect those few Lyman break galaxies that are far-infrared brightest.  相似文献   

12.
We use an 850-μm SCUBA map of the Hubble Deep Field (HDF) to study the dust properties of optically-selected starburst galaxies at high redshift. The optical/infrared (IR) data in the HDF allow a photometric redshift to be estimated for each galaxy, together with an estimate of the visible star-formation rate. The 850-μm flux density of each source provides the complementary information: the amount of hidden, dust-enshrouded star formation activity. Although the 850-μm map does not allow detection of the majority of individual sources, we show that the galaxies with the highest UV star-formation rates are detected statistically, with a flux density of about S 850=0.2 mJy for an apparent UV star-formation rate of 1  h −2 M yr−1. This level of submillimetre output indicates that the total star-forming activity is on average a factor of approximately 6 times larger than the rate inferred from the UV output of these galaxies. The general population of optical starbursts is then predicted to contribute at least 25 per cent of the 850-μm background. We carry out a power-spectrum analysis of the map, which yields some evidence for angular clustering of the background source population, but at a level lower than that seen in Lyman-break galaxies. Together with other lines of argument, particularly from the NICMOS HDF data, this suggests that the 850-μm background originates over an extremely wide range of redshifts – perhaps 1≲ z ≲6.  相似文献   

13.
We have used deep ground-based imaging in the near-infrared (near-IR) to search for counterparts to the luminous submillimetre (submm) sources in the catalogue of Smail et al. For the majority of the submm sources the near-IR imaging supports the counterparts originally selected from deep optical images. However, in two cases (10 per cent of the sample) we find a relatively bright near-IR source close to the submm position, sources that were unidentified in the deep Hubble Space Telescope ( HST ) and ground-based R -band images used by Smail et al. We place limits on colours of these sources from deep high-resolution Keck II imaging and find they have 2 σ limits of ( I − K )≳6.8 and ( I − K )≳6.0, respectively. Both sources thus class as extremely red objects (EROs). Using the spectral properties of the submm source in the radio and submm we argue that these EROs are probably the source of the submm emission, rather than the bright spiral galaxies previously identified by Smail et al. This connection provides important insights into the nature of the enigmatic ERO population and faint submm galaxies in general. From the estimated surface density of these submm-bright EROs we suggest that this class accounts for the majority of the reddest members of the ERO population, in good agreement with the preliminary conclusions of pointed submm observations of individual EROs. We conclude that the most extreme EROs represent a population of dusty, ultraluminous galaxies at high redshifts; further study of these will provide useful insights into the nature of star formation in obscured galaxies in the early Universe. The identification of similar counterparts in blank-field submm surveys will be extremely difficult owing to their faintness ( K ∼20.5, I ≳26.5). Finally, we discuss the radio and submm properties of the two submm-bright EROs discovered here and suggest that both galaxies lie at z ≳2.  相似文献   

14.
We present the first results of our Hubble Space Telescope HST WFPC2 F814W snapshot imaging survey, targeting virtually all sub-mJy decimetric radio-selected star-forming galaxies. The radio selection at ∼1 GHz is free from extinction effects and the radio luminosities are largely unaffected by AGN contamination, making these galaxies ideal tracers of the cosmic star formation history. A subsample of four targets is presented here, selected at 1.4 GHz from the spectroscopically homogenous and complete samples of Benn et al. and Hopkins et al. The redshifts are confined to a narrow range around z ∼0.2, to avoid differential evolution, with a radio luminosity close to L ∗ where the galaxies dominate the comoving volume-averaged star formation rate. We find clearly disturbed morphologies resembling those of ultraluminous infrared galaxies, indicating that galaxy interactions may be the dominant mechanism for triggering star formation at these epochs. The morphologies are also clearly different from those of coeval quasars and radio galaxies, as found in star-forming galaxies selected at other wavelengths. This may prove challenging for models that propose direct causal links between AGN evolution and the cosmic star formation history at these epochs. The asymmetries are typically much larger than seen in the Canada–France Redshift Survey at similar redshifts, optical luminosities and H α -derived star formation rates, indicating the possible existence of an obscuration-related morphological bias in such samples.  相似文献   

15.
We present extensive observations of a sample of distant, submillimetre (submm) galaxies detected in the field of the massive cluster lens Abell 1835, using the Submm Common-User Bolometer Array (SCUBA). Taken in conjunction with earlier observations of other submm-selected sources, we now have detailed, multiwavelength observations of seven examples of the submm population, having exploited the combination of achromatic amplification by cluster lenses and lavish archival data sets. These sources, all clearly at z ≳1, illustrate the wide range in the radio and optical properties of distant submm-selected galaxies. We include detailed observations of the first candidate 'pure' starburst submm galaxy at high redshift, a z =2.56 interacting galaxy which shows no obvious sign of hosting an AGN. The remaining sources have varying degrees of inferred AGN activity (three out of seven of the most luminous show some evidence of the presence of an AGN), although even when an AGN is obviously present it is still not apparent whether reprocessed radiation from this source dominates the submm emission. In contrast with the variation in the spectral properties, we see relatively homogeneous morphologies for the population, with a large fraction of merging or interacting systems. Our study shows that virtually identical spectral energy distributions are seen for galaxies that exhibit strikingly different optical/UV spectral-line characteristics. We conclude that standard optical/UV spectral classifications are misleading when applied to distant, highly obscured galaxies, and that we must seek other means of determining the various contributions to the overall energy budget of submm galaxies and hence to the far-infrared extragalactic background.  相似文献   

16.
17.
We identify eight   z > 1  radio sources undetected at 850 μm but robustly detected at 70 μm, confirming that they represent ultraluminous infrared galaxies (ULIRGs) with hotter dust temperatures  (〈 T d〉= 52 ± 10 K)  than submillimetre galaxies (SMGs) at similar luminosities and redshifts. These galaxies share many properties with SMGs: ultraviolet spectra consistent with starbursts, high stellar masses and radio luminosities. We can attribute their radio emission to star formation since high-resolution Multi-Element Radio Linked Interferometer Network (MERLIN) radio maps show extended emission regions (with characteristic radii of 2–3 kpc), which are unlikely to be generated by active galactic nucleus (AGN) activity. These observations provide the first direct confirmation of hot, dusty ULIRGs which are missed by current submillimetre surveys. They have significant implications for future observations from the Herschel Space Observatory and Submillimetre Common-User Bolometer Array 2 (SCUBA2), which will select high-redshift luminous galaxies with less selection biases.  相似文献   

18.
It is often suggested that the distant galaxies recently identified in 850-μm surveys with the SCUBA bolometer array on the James Clerk Maxwell Telescope are high-redshift analogues to local ultraluminous infrared galaxies, based on their similar spectral energy distributions and luminosities. We show that these two populations of objects must differ in at least one fundamental way from each other. This assertion is based on a consideration of the possible fates of gas in the high-redshift SCUBA galaxies, given the requirement that they most evolve into some subset of the low-redshift galaxy population with a comoving density of about 10−4 Mpc−3. One possibility is that the SCUBA galaxies have similar gas density profiles to local ultraluminous galaxies. If this is the case, then they must derive almost all their power from active galactic nuclei, which appears not to be the case for local ultraluminous galaxies, which are predominantly star-formation-powered. Another possibility is that the SCUBA galaxies have more extended gas density profiles than local ultraluminous galaxies. In this case they must be almost all star-formation-powered, and much of the star formation in the Universe can happen in these objects. Either way there is a significant difference between the low- and high-redshift populations.  相似文献   

19.
20.
We present the source catalogue for the SCUBA Lens Survey. We summarize the results of extensive multiwavelength observations of the 15 submillimetre-selected galaxies in the catalogue, from X-rays to radio. We discuss the main observational characteristics of faint submillimetre galaxies as a population, and consider their interpretation within the framework of our understanding of galaxy formation and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号