首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   

2.
The Tanjianshan Group, which was previously divided into a, b, c and d formations, has been controversial for a long time. It mainly distributes in the northern margin of Qaidam Basin and is an important early Paleozoic greenschist facies metamorphic volcanic sedimentary rock formation. Detailed field investigation and zircon LA-ICPMS U-Pb dating of the key strata suggest that the original lower part of a Formation(a-1) versus the original middle upper of d Formation(d-3 and d-4), the original upper part of a Formation(a-2) and b Formation versus the original lower part of d Formation(d-1 and d-2) of Tanjianshan Group are contemporaneous heterotopic facies volcanicclasolite deposit, respectively. The former formations formed during the middle-late Ordovician(463–458 Ma), while the latter ones formed in the late Ordovician(about 445 Ma). The original c formation of Tanjianshan Group, which formed after 430 Ma, is similar to the Maoniushan Formation of Kunlun Mountains and north Qaidam Basin. According to the rules of stratigraphic division and naming, new stratum formations of Tanjianshan Group are re-built and divided into Duancenggou(O1-2td), Zhongjiangou(O2-3tz) and Xitieshan(O3tx) formations. The original c Formation is separated from Tanjianshan Group and is renamed as the Wuminggou Formation(S3-D1w), which shows a discordant contact with underlying Tanjianshan Group and overlying Amunike Formation(D3a). The zircon U-Pb age frequency spectrogram of Tanjianshan Group indicates three prominent peaks of 430 Ma, 460 Ma and 908 Ma, which is consistent with the metamorphic and magmatic crystallization ages obtained from para- and orthogneisses in north Qaidam HP-UHP metamorphic belt, implying that strong Caledonian and Jinningian tectonic and magmatic events have ever happened in North Qaidam.  相似文献   

3.
U–Pb analysis of zircons from igneous rocks in the Elashan Mountain, easternmost segment of the East Kunlun Orogen yielded 252–232 Ma. Geochemically, these rocks are mainly high in SiO_2, K_2O and K_2O+Na_2O contents, low in P_2O_5 and TiO_2 contents, depleted in Ba, Sr, P, Ti and enriched in U, Hf, Zr, showing features of I–type granite. The zircon εHf(t) values of the Early Triassic Jiamuge'er rhyolite porphyry(252±3 Ma) are positive(+1.6 to +12.1), suggesting a juvenile crustal source mixing with little old crustal component, and the zircon εHf(t) values of the Middle Triassic Manzhang'gang granodiorite(244±3 Ma) and Dehailong diorite(237±3 Ma) are predominately negative(-8.4 to +1.0), indicating an older crustal source. In comparison, the zircon εHf(t) values of the Late Triassic syenogranites from Suigen'ergang(234±2Ma), Ge'ermugang(233±2 Ma) and Yue'ergen(232±3 Ma) plutons vary from-3.8 to +5.0, suggesting a crust-mantle mixing source. From Early–Middle Triassic(252–237 Ma) to Late Triassic(234–232 Ma), the geochemical characteristics of these rocks show the change from a subduction–collision setting to a post-collision or within-plate setting. By comparing of these new age data with 77 zircon U–Pb ages of igneous rocks of the eastern part of East Kunlun orogen from published literatures, we conclude that the igneous rocks of Elashan Mountain and these of the eastern part of East Kunlun Orogen belong to one magmatic belt. All these data indicate that the Triassic magmatic events of the eastern part of East Kunlun Orogen can be divided into three stages: 252–238 Ma, 238–226 Ma and 226–212 Ma. Statistically, the average εHf(t) values of the threestage igneous rocks show a tendency, from the old to young, from-0.75±0.25 to lower-2.65±0.52 and then to-1.22±0.25, respectively, which reveal the change of their sources. These characteristics can be explained as a crust-mantle mixing source generated in a subductional stage, mainly crust source in a syn–collisional stage and a crust-mantle mixing source(lower crust with mantle-derived underplating magma) in a post-collisional stage. The identification of these three magmatic events in the Elashan Mountain, including all the eastern part of East Kunlun Orogen, provides new evidence for better understanding of the tectonic evolution of the northward subduction and closure of the Paleo-Tethyan(252–238 Ma), the collision of the Songpan–Ganzi block with the southern margin of Qaidam block(238–226 Ma), and the post–collisional setting(226–212 Ma) during the Early Mesozoic period.  相似文献   

4.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

5.
We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.  相似文献   

6.
The Archean to Paleoproterozoic Central Zone of the North China Craton is situated between the Eastern and Western Archean continental blocks and contains two contrasting series of Neoarchean granitoids: the 2523–2486 Ma tonalite−trondhjemite–granodiorite (TTG) gneisses in the Fuping Complex, and the 2555–2525 Ma calc-alkaline granitoids (tonalite, granodiorite, granite and monzogranite) in the Wutai Complex. The Fuping TTG gneisses most likely formed from partial melting of 2.7 Ga basalts at >50 km, with an involvement of 3.0 Ga crustal material. The Wutai granitoids have higher K2O, LILE and Rb/Sr, but lower Sr/Y and LaN/YbN than the Fuping TTG gneisses, are characterized by Nd TDM from 2.5 to 2.8 Ga and Nd(t) from 0.49 to 3.34, and are derived from partial melting of a juvenile source at <37 km.The geochemistry of these two contrasting series of Neoarchean granitoids provides further evidence that the Wutai Complex originated and evolved separately from the Fuping Complex. The Wutai Complex most likely formed as an oceanic island arc with volcanism and synvolcanic granitoid intrusions at 2555–2525 Ma. The Wutai Complex was subsequently accreted onto the Eastern Archean Continental Block, and was probably responsible for crustal thickening and TTG magmatism at 2523–2486 Ma in the Fuping Complex (as part of the Taihangshan–Hengshan block), at the western margin of the Eastern Archean Continental Block.  相似文献   

7.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

8.
Partial melting of ultrahigh‐pressure (UHP) metamorphic rocks is common during collisional orogenesis and post‐collisional reworking, indicating that determining the timing and processes involved in this partial melting can provide insights into the tectonic evolution of collisional orogens. This study presents the results of a combined whole‐rock geochemical and zirconological study of migmatites from the Sulu orogen in eastern China. These data provide evidence of multiple episodes of crustal anatexis and geochemical differentiation within the UHP metamorphic rocks. The leucosomes contain higher concentrations of Ba and K and lower concentrations of the rare earth elements (REE), Th and Y, than associated melanosomes and granitic gneisses. The leucosomes also have homogenous Sr–Nd–O isotopic compositions that are similar to proximal (i.e. within the same outcrop) melanosomes, suggesting that the anatectic melts were generated by the partial melting of source rocks that are located within individual outcrops. The migmatites contain zircons with six different types of domains that can be categorized using differences in structures, trace element compositions, and U–Pb ages. Group I domains are relict magmatic zircons that yield middle Neoproterozoic U–Pb ages and contain high REE concentrations. Group II domains represent newly grown metamorphic zircons that formed at 230 ± 1 Ma during the collisional orogenesis. Groups III, IV, V, and VI zircons are newly grown anatectic zircons that formed at 222 ± 2 Ma, 215 ± 1 Ma, 177 ± 2 Ma, and 152 ± 2 Ma, respectively. The metamorphic zircons have higher Th/U and lower (Yb/Gd)N values, flat heavy REE (HREE) patterns with no significantly negative Eu anomalies relative to the anatectic zircons, which are characterized by low Th/U ratios, steep HREE patterns, and negative Eu anomalies. The first two episodes of crustal anatexis occurred during the Late Triassic at c. 222 Ma and c. 215 Ma as a result of phengite breakdown. The other two episodes of anatexis occurred during the Jurassic period at c. 177 Ma and c. 152 Ma and were associated with extensional collapse of the collision‐thickened orogen. The majority of Triassic anatectic zircons and all of the Jurassic zircons are located within the leucosomes, whereas the melanosomes are dominated by Triassic metamorphic zircons, suggesting that the leucosomes within the migmatites record more episodes of crustal anatexis. Both metamorphic and anatectic zircons have elevated εHf(t) values compared with relict magmatic zircon cores, suggesting that these zircons contain non‐zircon Hf derived from material with more radiogenic Hf isotope compositions. Therefore, the Sulu and Dabie orogens experienced different episodes of reworking during the exhumation and post‐collisional stages.  相似文献   

9.
Regional‐scale 40Ar–39Ar data presented in this paper reveal significant across‐strike and along‐strike age differences in the Committee Bay belt (CBb), Rae Province, Nunavut, Canada, that complement variations in observed monazite ages. 40Ar–39Ar hornblende ages are c. 1795, 1775, and 1750 Ma in the western, eastern and central parts of the Prince Albert Group (PAG) domain respectively. The migmatite domain and Walker Lake intrusive complex are characterized by c. 1750–1730 40Ar–39Ar hornblende ages without significant along‐strike variation. The 40Ar–39Ar data provide important constraints on the cooling history and on thermal modelling that elucidates the controls on diachroneity and metamorphic patterns within the belt. In the western CBb, prograde monazite growth occurred 26 ± 10 Myr earlier in the migmatite domain (1864 ± 9 Ma; peak P–T = 5 kbar?700 °C) than in the PAG domain (1838 ± 5 Ma; peak P–T = 5 kbar?580 °C). Calculations indicate that this earlier monazite growth results from tectonic thickening of higher heat productivity Archean lithologies in the migmatite domain, which undergoes more rapid prograde heating than the less radiogenetic and lower grade rocks of the PAG domain. Granite generation via biotite dehydration melting at 800 °C and 20 km depth is predicted to occur c. 1835 Ma, in agreement with geochronological constraints. The tectonic burial of crustal domains with contrasting radiogenic properties also explains the general congruence of lower to upper amphibolite facies metamorphic zones generated during the two main orogenic cycles (i.e. M2–D1 and M3–D2). The modelled timing of prograde monazite growth in the migmatite domain suggests that D2 tectonic thickening began at 1872 ± 9 Ma, some 8 ± 3 Myr before monzazite growth, coeval with the inferred time of collision of the Meta Incognita terrane with the southern Rae Province. Along‐strike diachroneity, reflected in 25 Myr younger monazite and 40Ar–39Ar hornblende ages in the eastern relative to the western PAG domain, cannot be accounted for by heat productivity contrasts along the belt. Instead the younger deformation and metamorphism in the eastern CBb was driven by its proximity to the eastern promontory of the Superior Province which collided with the Rae Province at c. 1820 Ma. The 40Ar–39Ar data presented here support the interpretation that the youngest monazite in the CBb crystallized at c. 1790 Ma in the central CBb when this part of the belt was downfolded into a gentle synformal structure while the western part of the belt cooled through 40Ar–39Ar hornblende closure. The results of this study illustrate the important influence of contrasting rock properties on the thermal evolution of orogenic belts and on the temporal record of this evolution.  相似文献   

10.
ABSTRACT Key insights into the timing of tectonometamorphic events in a complex high-grade metamorphic terrane can be obtained by combining results from SHRIMP II ion microprobe studies of individual monazite grains with SHRIMP II studies and scanning electron microscope (SEM)-based cathodoluminescence (CL) imaging of zircons. Results from the Reynolds Range region, Arunta Block, Northern Territory, Australia, show that the final episode of regional metamorphism to high-T and low-P granulite facies conditions is most likely to have occurred at c. 1580 Ma, not at 1785–1775 Ma, as previously accepted. The previous interpretation was based on zircon studies of structurally controlled granitoids, without SEM-based CL imaging. Monazites in a 1806± 6 Ma megacrystic granitoid preserve rare cores that are interpreted to be inherited magmatic monazite, but record no evidence of another high-T event prior to 1580 Ma. Most monazites from the region record only a single high-T metamorphic event at c. 1580 Ma. Zircon inheritance is very common. Zircons or narrow overgrowths of zircon dated at c. 1580 Ma have only been found in two types of rocks: rocks produced by metasomatic fluid flow at high temperatures (≤750°C), and rocks that have undergone local partial melting. Previous explanations that attributed these 1580 Ma zircon ages to widespread hydrothermal fluid fluxing associated with post-tectonic pegmatite emplacement at amphibolite facies conditions are not supported by the available evidence including oxygen isotope data. The observed high regional metamorphic temperatures require the involvement of advective heating. However, contrary to a previous tectonic model for the formation of this and other low-P, high-T metamorphic belts, the granites that are exposed at the present structural level do not appear to be the source of that heat, unless some of the granites were emplaced at c. 1580 Ma.  相似文献   

11.
Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high SiO2(73.19–77.68 wt%) and Na2O+K2O(6.53–8.98 wt%) contents, with enrichment in Rb, Th, U, Pb and LREE, and depletion in Nb, Ta, P and Ti. Three rhyolite samples, one rhyolite porphyry sample, and one volcanic breccia sample yield weighted mean 206Pb/238 U ages of 135.1±1.2 Ma, 116.5±1.1 Ma, 121.9±1.0 Ma, 118.1±0.9 Ma and 116.9±1.4 Ma, respectively. All these rocks have moderate(87Sr/86Sr)i values of 0.704912 to 0.705896, slightly negative εNd(t) values of –1.4 to –0.1, and positive εHf(t) values of 3.7 to 8. Their zircon Hf and whole-rock Nd isotopic model ages range from 594 to 1024 Ma. These results suggest that the Early Cretaceous volcanic rocks were originated from melting of subducted oceanic crust and associated sediments during the closure of the Mongol-Okhotsk Ocean.  相似文献   

12.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

13.
宁芜地区三个辉长岩的全岩和矿物Rb-Sr等时线年龄   总被引:9,自引:0,他引:9       下载免费PDF全文
 从南京到芜湖有许多辉长岩体分布,如南京蒋庙岩体、高古山岩体、大栏杆岩体,马鞍山阳湖塘岩体,当涂姑山岩体和芜湖市区的辉长岩体等。  相似文献   

14.
 Sittampundi and Bhavani Archean layered meta-anorthosite complexes occur as tectonic lenses within the Cauvery shear zone (CSZ), a crustal scale shear dividing the Precambrian granulite crust of south India into late Archean (> 2.5 Ga) and Proterozoic (c. 0.55 Ga) blocks. They and their host supracrustal-gneiss rocks record at least two stages of tectonometamorphic history. The first is seen as regional scale refolded isoclinal folds and granulite metamorphism (D1-M1) while the second stage is associated with dominantly E–W dextral transcurrent shearing and metamorphic recrystallisation (D2-MCSZ). Whole rock Sm-Nd isochrons for several comagmatic rocks of the layered complexes yield concordant ages: Sittampundi – 2935±60 Ma, ɛNd + 1.85±0.16 and Bhavani – 2899±28 Ma, ɛNd + 2.18±0.14 (2σ errors). Our Sm-Nd results suggest that: (1) the magmatic protoliths of the Sittampundi and Bhavani layered complexes were extracted from similar uniform and LREE depleted mantle sources; (2) M1 metamorphism occurred soon after emplacement at c.3.0 Ga ago. P-T estimates on garnet granulites from the Sittampundi complex characterise the MCSZ as a high-P event with metamorphic peak conditions of c. 11.8 kbar and 830°C (minimum). The MCSZ is associated with significant isothermal decompression of the order of 4.5–3.5 kbar followed by static high-temperature rehydration and retrogression around 600°C. The timing of MCSZ is inferred to be Neoproterozoic at c. 730 Ma based on a whole rock-garnet-plagioclase-hornblende Sm-Nd isochron age for a garnet granulite from the Sittampundi complex and its agreement with the 800–600 Ma published age data on post-kinematic plutonic rocks within the CSZ. These results demonstrate that the Cauvery shear zone is a zone of Neoproterozoic reworking of Archean crust broadly similar to the interface between the Napier and Rayner complexes of the East Antarctic shield in a model Proterozoic Gondwana supercontinent. Received: 5 December 1995 / Accepted: 3 May 1996  相似文献   

15.
Eclogites in the Tromsø area, northern Norway, are intimately associated with meta-supracrustals within the Uppermost Allochthon of the Scandinavian Caledonides (the Tromsø Nappe Complex). The whole sequence, which includes pelitic to semipelitic schists and gneisses, marbles and calc-silicate rocks, quartzofeldspathic gneisses, metabasites and ultramafites, has undergone three main deformational/metamorphic events (D1/M1, D2/M2 and D3/M3). Detailed structural, microtextural and mineral chemical studies have made it possible to construct separate P–T paths for these three events. Chemically zoned late syn- to post-D1 garnets with inclusions of Bt, Pl and Qtz in Ky-bearing metapelites indicate a prograde evolution from 636°C, 12.48 kbar to c. 720°C, 14–15 kbar. This latter result is in agreement with Grt–Cpx geothermometry and Grt–Cpx–Pl–Qtz geobarometry on eclogites and trondhjemitic to dioritic gneisses. Maximum pressures at c. 675°C probably reached 17–18 kbar based on Cpx–Pl–Qtz inclusions in eclogitic garnets, and Grt–Ky–Pl–Qtz and Jd–Ab–Qtz in trondhjemitic gneisses. Post-D1/pre-D2 decompressional breakdown of the high-P assemblages indicates a substantial drop in pressure at this stage. Inclusions and chemical zoning in syn- to post-D2 garnets from metapelites record a second episode of prograde metamorphism, from 552°C, 7.95 kbar, passing through a maximum pressure of 10.64 kbar at 644°C, with final equilibration at c. 665°C, 9–10 kbar. The corresponding apparently co-facial paragenesis Grt + Cpx + Pl + Qtz in metabasites yields c. 635°C, 8–10 kbar. In the metapelites post-D3, Grt in apparent equilibrium with Bt, Phe and Pl yield c. 630°C, 9 kbar. The D1/M1 and D2/M2 episodes are exclusively recorded in the Tromsø Nappe Complex and must thus pre-date the emplacement of this allochthonous unit on top of the underlying Lyngen Nappe, while the D3/M3 episode is common for the two units. A previously published Sm–Nd mineral isochron (Grt–Cpx–Am) on a partly retrograded and recrystallized ecologite of 598 ± 107 Ma represents either the timing of formation of the eclogites or the post-eclogite/pre-D2 decompression stage, while a Rb–Sr whole rock isochron of an apparently post-D1/pre-D2 granite of 433 ± 11 Ma is consistent with a K–Ar age of post-D1/pre-D2 amphiboles from a retrograded eclogite of 437 ± 16 Ma which most likely record cooling below the 475–500°C isotherm after the M3 metamorphism.  相似文献   

16.
Sensitive high-resolution ion microprobe (SHRIMP) U–Pb dating, laser-ablation multi-collector ICPMS Hf isotope and electron microprobe element analyses of inherited/antecrystal and magmatic zircons from five granitoid intrusions of Linxi area, in the southern segment of the Great Xing’an Range of China were integrated to solve continental crustal growth mechanisms. These intrusions were divided into two suites. Suites 1 and 2 are mainly granodiorite and syenogranite and correspond to magnesian and ferroan granites, respectively. SHRIMP dating establishes an Early Cretaceous (135–125 Ma) age for most Linxi granitoids and a time of ∼146 Ma when their source rocks were generated or re-melted. However, some granitoids were generated in Early Triassic (241 Ma) and Late Jurassic (146 Ma), after their source rock experienced precursory melting episodes at 263 Ma and 165 Ma, respectively. All zircon 206Pb/238U ages (<300 Ma, n = 100), and high positive zircon εHf(t) values (n = 175) suggest juvenile source materials with an absence of Precambrian basement. Hf–Nd isotopic decoupling of Linxi granitoids suggests a source component of pelagic sediments, i.e. Paleozoic subduction accretion complexes. Zircon εHf(t) values (t = 263–165 Ma) form a trend sub-parallel to the depleted mantle Hf isotope evolution curve, whilst those with t = 146–125 Ma fall markedly below the latter. The first trend indicates a provenance from essentially subducted oceanic slabs. However, the abrupt εHf(t) decrease, together with extensive Early Cretaceous magmatism, is interpreted as reflecting mantle upwelling and resultant underplating, and exhumation of subducted oceanic slabs. Suite 1 granitoids derive mainly from subducted oceanic slabs or Paleozoic subduction accretion complex, whereas Suite 2 from underplated mafic rock and, subordinately, Paleozoic subduction accretion complex. Compositions of Suites 1 and 2 depend on the hydrous, oxidized or relatively anhydrous, reduced nature of source rocks. Among each of these five intrusions, magmatic zircons have systematically lower 176Hf/177Hf than inherited/antecrystal zircons. Hf isotopic and substituting element profiles through inherited/antecrystal zircons (t = 263 to ∼146 Ma) indicate repeated low melt-fraction melting in the source region. In contrast, profiles through inherited/antecrystal and magmatic zircons (t = 146–125 Ma) reveal melting region expansion with a widening range of source compositions and increasing melt fractions. These results lead to the conclusion that continental growth in this region involved a three-step process. This included subduction accretion and repeated underplating, intermediary differentiation of juvenile rocks, and granitoid production from these differentiated rocks.  相似文献   

17.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   

18.
The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high‐temperature, low‐pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850–1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a 207Pb/206Pb SHRIMP age of 1867 ± 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860–1855 Ma, prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer‐parallel D1 foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S2 gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic 207Pb/206Pb age of 1845 ± 4 Ma. The S2 fabric is folded around tight folds and cut by ductile shear zones associated with D3 (ca 1830 Ma), and all pre‐existing structures are folded around large‐scale, open F4 folds (ca 1820 Ma). Construction of a temperature‐time path for the mid‐crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400–500°C for 25–30 million years) encompassing two deformation phases. Protoliths to the Tickalara Metamorphics were relatively cold (~350°C) when intruded by the Fletcher Creek Granite at ca 1850 Ma, but were subsequently heated rapidly to 700–800°C during peak metamorphism at ca 1845 Ma. Repeated injection of mafic magmas caused multiple remelting of the metasedimentary wall rocks, with mappable increases in leucosome volume that show a strong spatial relationship to these intrusives. This mafic igneous activity prolonged the elevated geotherm and ensured that the rocks remained very hot (≥650°C) for at least 10 million years. The Mabel Downs Tonalite was emplaced during amphibolite facies metamorphism, with intrusion commencing at ca 1835 Ma. Its compositional heterogeneity, and the presence of mutual cross‐cutting relations between ductile shear zones and multiple injections of mingled magma suggest that it was emplaced syn‐D3. Broad‐scale folding attributable to F4 was accompanied by widespread intrusion of granitoids, and F4 fold limbs are truncated by large, mostly brittle retrograde S4 shear zones.  相似文献   

19.
Several aspects of the petrogenesis of low-pressure granulite facies rocks from the Reynolds Range (central Australia) are contentious, including: (a) the shape of the retrograde P–T –time path, and whether it is an artefact of repeated thermal events at different P–T conditions; (b) the type of regional metamorphism; and (c) the causes of metamorphism. Granulite facies rocks from the Reynolds Range Group experienced three major periods of mineralogical equilibration. Metapelitic rocks underwent dehydration-melting reactions to form migmatites under peak M2 P–T conditions of c. 5.0–5.3 kbar and c. 750–800 °C. Metapsammitic rocks that did not melt during M2 show spectacular garnet–orthopyroxene intergrowths that developed at c. 3.5–3.7 kbar and c. 700–750 °C after penetrative regional deformation, but prior to amphibolite facies rehydration in discrete strike-parallel zones. Rehydration occurred within the sillimanite stability field at P–T conditions close to the granite solidus (c. 3.2–3.4 kbar and 650–700 °C). Subsequently the terrane cooled into the andalusite stability field. Geochronological constraints suggest that: (a) peak-M2 conditions were reached at c. 1594 Ma; (b) the garnet–orthopyroxene intergrowths in unmelted metapsammites probably developed between c. 1594 Ma and c. 1586 Ma; and (c) upper amphibolite facies rehydration occurred between c. 1586 Ma and 1568 Ma. The lack of petrological evidence for multiple dehydration and rehydration of the rocks suggests that the three episodes of mineralogical recrystallization can be linked to yield a single continuous retrograde P–T–t path of minor initial decompression (c. 1.5 kbar) from the M2 peak, followed by cooling (c. 100 °C) to the granite solidus over a period of c. 26 Ma. Late kyanite-bearing shear zones that dissect the terrane are unrelated to this event and formed during the c. 300–400 Ma Alice Springs Orogeny. The shape of the P–T–t path and the duration of M2 metamorphism suggests that advective heating was not the major cause of high-grade metamorphism, and that some other, longer lived heat source, such as the burial of anomalously radiogenic, pre-tectonic granites, is required.  相似文献   

20.
The Mesozoic granitoids in the Dabie Orogen are of particular geological interest as indicators for Mesozoic lithospheric evolution and because of their close association with porphyry Mo mineralization. Here, we present a study using zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb dating, petrogeochemistry, and Hf isotopic data to constrain the timing of the magmatism and petrogenesis of the Xinxian granites in the Dabie Mo mineralization belt (DMB), Henan Province, China. Field investigations combined with previously published data show that the Xinxian pluton mainly consists of four phases. Zircon LA-ICP-MS U–Pb dating yielded ages from 153.4 ± 1.1 Ma for Phase 1 to 146.4 ± 1.6 Ma for Phase 2, 131.6 ± 1.8 Ma for Phase 3, and 125.5 ± 1.5 Ma for Phase 4. The Xinxian granites have high SiO2 contents of 74.94–78.70 wt.% (average: 76.63 wt.%), Al2O3 contents of 11.59–13.68 wt.% (average: 13.01 wt.%), and K2O contents of 3.85–4.86 wt.% (average: 4.36 wt.%) with Na2O/K2O ratios of 0.78–1.03 (average: 0.92) and low MgO (0.04–0.15 wt.%), TiO2 (0.03–0.13 wt.%), and P2O5 (0.006–0.07 wt.%) contents. They are enriched in Rb, U, K, and Hf, but depleted in Ba, Nb, Ta, Sr, P, and Ti. The zircon εHf(t) values for Phases 1, 2, 3, and 4 vary as follows: from – 22.8 to – 20.3 with TDM2 values from 2682 to 2869 Ma, from – 24.2 to – 21.2 with TDM2 values from 2738 to 2925 Ma, from ?24.5 to ?21.5 with TDM2 values from 2722 to 2915 Ma, and from ?22.9 to ?19.4 with TDM2 values from 2421 to 2643 Ma, respectively. By integrating previous geological, geochronological, and geochemical data for the DMB, we propose that the Xinxian pluton was dominantly sourced from the crust. The granites were most likely derived from the partial melting of the Northern Dabie Complex (NDC) with some Yangtze lower crust and Southern Dabie Complex (SDC). The Xinxian pluton may have formed in a post-collision extensional setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号