首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

2.
We investigate in detail the kinematics and morphology of the Seyfert galaxy NGC 6104 in order to identify the mechanism of gas transportation to the active galactic nucleus (AGN). Our observational data were obtained at the 6-m Special Astrophysical Observatory telescope with the MPFS integral-field spectrograph and the SCORPIO universal device in three modes: direct imaging, a scanning Fabry—Perot interferometer, and long-slit spectroscopy. Images from the HST archive were invoked to study the structure of the circumnuclear region. An analysis of deep images has shown for the first time that NGC 6104 is in the phase of active merging with a companion galaxy. We have been able to study the detailed picture of ionized gas motions up to galactocentric distances of 14 kpc and to construct the stellar velocity field for the inner region. The radial gas motions toward the AGN along the central bar play a significant role at galactocentric distances of 1–5 kpc. In addition, we have detected an outflow of ionized gas from the nucleus that presumably resulted from the intrusion of a radio jet into the ambient interstellar medium. Using diagnostic diagrams, we estimate the contributions from the AGN and star formation to the galactic gas ionization. We estimate the bar pattern speed by the Tremaine-Weinberg method and show that the inner ring observed in the galaxy’s images has a resonant nature. Two possible ring formation scenarios, before and during the interaction with a companion, are discussed.  相似文献   

3.
Our inzvestigation of the central region in NGC 4548, a bright Sb galaxy with a large-scale bar, using the Multipupil Field Spectrograph of the 6-m telescope revealed a chemically decoupled compact stellar nucleus with [Fe/H]=+0.6 and [Mg/Fe]=+0.1...+0.2 and with a mean stellar-population age of 5 Gyr. This nucleus, a probable circumnuclear disk coplanar with the global galactic disk, is embedded in the bulge whose stars are generally also young, T≈4 Gyr, although they are a factor of 2.5 more metal-poor. The bulge of NGC 4548 is triaxial and has a de Vaucouleurs surface-brightness profile; the unusual characteristics of its stellar population suggest the bulge formation or completion in the course of secular evolution in the triaxial potential of the global bar. The ionized gas within 3″ of the NGC 4548 nucleus rotates in a plane inclined to the principal symmetry plane of the galaxy, possibly, even in its polar plane, which may also result from the action of the large-scale bar.  相似文献   

4.
The overall morphology of the barred spiral galaxy NGC 7479 is modelled in numerical simulations of a minor merger. Special attention is paid to the morphology and velocity field of the asymmetric spiral structure and the strong stellar bar. The mass of the satellite galaxy is 1/10 of the mass of the primary disc, or 1/30 of the total mass of the primary. The satellite is placed initially in a circular prograde orbit at six disc scalelengths from the centre of the primary. We follow the evolution of the merger until the secondary galaxy reaches the nuclear region of the primary. A comparison between the modelled and observed morphologies of the stellar and the ionized and neutral gas distributions and velocity fields supports the hypothesis that the transient look of NGC 7479 is a result of a minor merger. We vary several of the initial parameters of the merger and discuss their effects on the resulting morphology. The merging satellite galaxy is likely to lie within the bar of NGC 7479. We identify a possible candidate in the observational data. We discuss briefly the most probable future evolution of NGC 7479 in the light of our minor-merger simulations, and conclude that NGC 7479 is likely to evolve toward an earlier Hubble type.  相似文献   

5.
We present new important results about the intermediate-type Seyfert galaxy Mrk 315, recently observed through optical imaging and integral-field spectroscopy. Broad-band images were used to study the morphology of the host galaxy, narrow-band Hα images to trace the star-forming regions, and middle-band [O  iii ] images to evidence the distribution of the highly ionized gas. Some extended emission regions were isolated and their physical properties studied by means of flux-calibrated spectra. High-resolution spectroscopy was used to separate different kinematic components in the velocity fields of gas and stars. Some peculiar features characterize this apparently undisturbed and moderately isolated active galaxy. Such features, already investigated by other authors, are re-analysed and discussed in the light of these new observations. The most relevant results we obtained are: the multitiers structure of the disc; the presence of a quasi-ring of regions with star formation much higher than previous claims; a secondary nucleus confirmed by a stellar component kinematically decoupled by the main galaxy; a new hypothesis about the controversial nature of the long filament, initially described as hook shaped, and more likely made of two independent filaments caused by interaction events between the main galaxy and two dwarf companions.  相似文献   

6.
We have identified two new galaxies with gas counter-rotation (NGC 1596 and 3203) and have confirmed similar behaviour in another one (NGC 128), this using results from separate studies of the ionized-gas and stellar kinematics of a well-defined sample of 30 edge-on disc galaxies. Gas counter-rotators thus represent 10 ± 5 per cent of our sample, but the fraction climbs to 21 ± 11 per cent when only lenticular (S0) galaxies are considered and to 27 ± 13 per cent for S0 galaxies with detected ionized gas only. Those fractions are consistent with but slightly higher than previous studies. A compilation from well-defined studies of S0 galaxies in the literature yields fractions of 15 ± 4 and 23 ± 5 per cent, respectively. Although mainly based on circumstantial evidence, we argue that the counter-rotating gas originates primarily from minor mergers and tidally induced transfer of material from nearby objects. Assuming isotropic accretion, twice those fractions of objects must have undergone similar processes, underlining the importance of (minor) accretion for galaxy evolution. Applications of gas counter-rotators to barred galaxy dynamics are also discussed.  相似文献   

7.
We present our observations of the pair of interacting galaxies NGC 6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO) telescope using 1D and 2D spectroscopy. The observations of NGC 6286 with a long-slit spectrograph (UAGS) near the Hα line revealed the rotation of the gaseous disk around an axis offset by 5″–7″ from the photometric center and a luminous gas at a distance up to 9 kpc in a direction perpendicular to the galactic plane. Using a multipupil fiber spectrograph (MPFS), we constructed the velocity fields of the stellar and gaseous components in the central region of this galaxy, which proved to be similar. The close radial velocities of the pair and the wide (5′×5′) field of view of the scanning Fabry-Perot interferometer (IFP) allowed us to simultaneously obtain images in the Hα and [N II]λ6583 lines and in the continuum, as well as to construct the radial velocity fields and to map the distribution of the [N II]λ6583/Hα ratio for both galaxies. Based on all these data, we studied the gas kinematics in the galaxies, constructed their rotation curves, and estimated their masses (2 × 1011M for NGC 6286 and 1.2 × 1010M for NGC 6285). We found no evidence of gas rotation around the major axis of NGC 6286, which argues against the assumption that this galaxy has a forming polar ring. The IFP observations revealed an emission nebula around this galaxy with a structure characteristic of superwind galaxies. The large [N II]λ6583/Hα ratio, which suggests the collisional excitation of its emission, and the high infrared luminosity are additional arguments for the hypothesis of a superwind in the galaxy NGC 6286. A close encounter between the two galaxies was probably responsible for the starburst and the bipolar outflow of hot gas from the central region of the disk.  相似文献   

8.
We present the velocity field of the stars in the central 25″ × 22″ of NGC 1068 derived from 2-D spectroscopy of the Ca II triplet. A preliminary analysis provides evidence for two distinct stellar systems in the centre of NGC 1068. In the outer regions (say r > 10″), the mean stellar velocity field seems coupled to those of the ionized and molecular gas, indicating aproximately regular rotation with the kinematic minor axis at PA ~ 0°. However, in the inner region, the stars are rotating, whereas the ionized gas is outflowing in the NE-SW direction probably due to the effects of the nuclear activity, and the molecular gas is responding to the bar potential. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The TAURUS-2 Fabry–Perot interferometer, mounted on the 3.9-m Anglo-Australian Telescope, has been used to observe the Circinus galaxy. We have mapped the intensity and velocity distribution of the ionized hydrogen in the galaxy using the Balmer series Hα spectral line.
The semiresolved core (observed with a seeing disc of 30 pc) appears amorphous in shape, which is commonly observed in Seyfert 2 galaxies. Its peak coincides with the core position measured in the radio continuum, suggesting that ionized gas surrounds a non-thermal source.
A circumnuclear ring or spiral of radius 220 pc and a rotational velocity of 350 km s−1 (assuming circular motions) surrounds the core. The inclination angle of this feature, i =40°±10°, is less than that of the previously observed radio continuum disc. The velocity channel maps obtained for the Hα ring show that the kinematics resemble those of a rotating ring and the intensity displays a complex structure indicative of several, unresolved, H II regions. We believe the ring to represent a circumnuclear starburst.
Our Hα data also show the presence of the previously detected [O III ] ionization cone to the north-west of the core, measuring more than 400 pc in length. We suggest that the ionization cone lies in a different plane from that of the starburst ring and is directed away from us. Several kinematic components of the core are derived and we calculate an outflow velocity in excess of 150–200 km s−1 for gas above the core of Circinus. We also present evidence for inflowing ionized gas at the centre of Circinus.
The correlation of the Hα and radio continuum features is discussed, as well as the possible presence of a starburst-driven superwind in the Circinus galaxy.  相似文献   

10.
We present an X-ray spectral analysis of a sample of eight bona fide Seyfert 2 galaxies, selected on the basis of their high [O  iii ] λ 5007 flux, from the Ho et al. spectroscopic sample of nearby galaxies. We find that, in general, the X-ray spectra of our Seyfert 2 galaxies are complex, with some of our objects having spectra different from the 'typical' spectrum of X-ray selected Seyfert 2 galaxies. Two (NGC 3147 and 4698) show no evidence for intrinsic absorption. We suggest that this is a result of the fact that when the torus suppresses the intrinsic medium and hard energy flux, underlying emission from the host galaxy, originating in circumnuclear starbursts, and scattering from warm absorbers contributes in these energy bands more significantly. Our ASCA data alone cannot discriminate whether low-absorption objects are Compton-thick active galactic nuclei (AGNs) with a strong scattered component or lack an obscuring torus. The most striking example of our low absorption Seyfert 2 is NGC 4698. Its spectrum could be explained by either a dusty warm absorber or a lack of broad-line clouds so that its appearance as a Seyfert 2 is intrinsic and not a result of absorption.  相似文献   

11.
We discuss here the spectroscopic properties of the Seyfert 2 galaxy NGC 7130 (= IC 5135). Emission line regions were isolated and line ratios were measured and fitted with photoionization models; this allowed to discriminate between thermal and non thermal ionization in the circumnuclear regions. Massive star formation is likely to occur at projected distances from the nucleus ≫ 2 kpc: line profiles in these regions suggest the presence of outflows of gas due to stellar winds from hot massive stars.  相似文献   

12.
We present the results of spectroscopic observations of three S0-Sa galaxies: NGC 338, NGC 3245, and NGC 5440 at the SAO RAS 6-m BTA telescope. The radial distributions of the line-ofsight velocities and radial velocity dispersions of stars and ionized gas were obtained, and rotation curves of galaxies were computed. We construct the numerical dynamic N-body galaxy models with N ?? 106 points. The models include three components: a ??live?? bulge, a collisionless disk, dynamically evolving to the marginally stable state, and a pseudo-isothermal dark halo. The estimates of radial velocities and velocity dispersions of stars obtained from observations are compared with model estimates, projected onto the line of sight. We show that the disks of NGC 5440 and the outer regions of NGC 338 are dynamically overheated. Taking into account the previously obtained observations, we conclude that the dynamic heating of the disk is present in a large number of early-type disk galaxies, and it seems to ensue from the external effects. The estimates of the disk mass and relative mass of the dark halo are given, as well as the disk mass-to-luminosity ratio for seven galaxies, observed at the BTA.  相似文献   

13.
In this paper we present the kinematics of the gas and/or the stars of a sample of 20 disc galaxies. We investigate whether there is any relation between the kinematics of the gas and stars and the classical morphological type of the galaxies in the sample. We deduce that, in most of the late-type spirals we have studied, the stars and the ionized gas are moving with virtually circular velocity, except when the spectroscopic slit crosses a bar region. On the other hand, we found in the central parts of early-type disc galaxies a wider variety of different behaviour of stars and gas. We find many possible factors that complicate the classification of the kinematical properties of the galaxies by their morphological type: the presence of counter-rotations (star vs. stars or star vs. gas), misalignment between the different kinematic components present in the galaxy, the presence of a bar structure and its orientation with respect to the line of nodes of the galaxy, and interactions and mergers or external accretion processes are some of the problems we find in the study of the kinematics of a galaxy.  相似文献   

14.
We have discovered a new type of galaxy in the Fornax Cluster: `ultra-compact' dwarfs (UCDs). The UCDs are unresolved in ground-based imaging and have spectra typical of old stellar systems. Although the UCDs resemble overgrown globular clusters, based on VLT UVES echelle spectroscopy, they appear to be dynamically distinct systems with higher internal velocity dispersions and M/L ratios for a given luminosity than Milky Way or M31 globulars. Our preferred explanation for their origin is that they are the remnant nuclei of dwarf elliptical galaxies which have been tidally stripped, or `threshed' by repeated encounters with the central cluster galaxy, NGC1399. If correct, then tidal stripping of nucleated dwarfs to form UCDs may, over a Hubble time, be an important source of the plentiful globular cluster population in the halo of NGC1399, and, by implication, other cD galaxies. In this picture, the dwarf elliptical halo contents, up to 99% of the original dwarf luminosity, contribute a significant fraction of the populations of intergalactic stars, globulars, and gas in galaxy clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present high-resolution near-infrared imaging obtained using adaptive optics and HST /NICMOS, and ground-based spectroscopy of the hotspot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hotspots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H  ii regions, as revealed by the HST /NICMOS Pa α image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc.
The star formation properties of the stellar clusters and H  ii regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4–7×106 yr after the peak of star formation, or absolute ages 6.5–9.5×106 yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7–12 per cent of the total stellar mass in the central 625 pc of NGC 2903. The H  ii regions in the ring of star formation have luminosities close to that of the supergiant H  ii region 30 Doradus, they are younger than the stellar clusters, and they will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.  相似文献   

16.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

17.
We present high-resolution (R~20,000) spectra in the blue and the far red of circumnuclear star-forming regions (CNSFRs) in three early-type spirals (NGC3351, NGC2903 and NGC3310), which have allowed the study of the kinematics of the stars and the ionized gas in these structures and, for the first time, the derivation of their dynamical masses for the first two. In some cases, these regions, about 100 to 150 pc in size, are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. The stellar dispersions have been obtained from the Calcium triplet (CaT) lines at λ λ 8494, 8542, 8662 Å, while the gas velocity dispersions have been measured by means of Gaussian fits to the Hβ and [Oiii]λ 5007 Å lines in the high-dispersion spectra. Values of the stellar velocity dispersions are between 30 and 68 km?s?1. We apply the virial theorem to estimate dynamical masses of the clusters, assuming that systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the entire CNSFRs. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ 5007 Å lines. The douby-ionized oxygen, on the other hand, exhibits velocity dispersions comparable to those of the stars or, in some cases, even larger. We have found indications of the presence of two different kinematical components in the ionized gas of the regions. We have mapped the velocity field in the central kpc of the spiral galaxies NGC3351 and NGC2903. For the first object, the radial velocity curve shows deviations from circular motions for the ionized hydrogen consistent with its infall towards the central regions of the galaxy, at a velocity of about 25 km?s?1. For NGC3310, we present preliminary results for the velocity dispersions for one of the two observed slit position angles, two CNSFRs and the nucleus.  相似文献   

18.
We analyze new observational data obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the multimode SCORPIO instrument and the Multi-Pupil Fiber Spectrograph for the group of galaxies NGC 7465/64/63. For one of the group members (NGC 7465), the presence of a polar ring has been suspected. We have constructed the large-scale brightness distributions, the ionized-gas velocity and velocity dispersion fields for all three galaxies as well as the line-of-sight velocity curves based on emission and absorption lines and the stellar velocity field in the central region for NGC 7465. As a result of our analysis of the data obtained, we have discovered an inner stellar disk (r ?? 0.5 kpc) and a warped gaseous disk in NGC 7465, in addition to the main stellar disk. Based on a joint study of our photometric and spectroscopic data, we have established that NGC 7464 is an irregular IrrI-type galaxy whose structural and kinematic peculiarities most likely resulted from its gravitational interaction with NGC 7465. The velocity field of the ionized gas in NGC 7463 turns out to be typical of barred spiral galaxies, and the warp of the outer parts of its disk could arise from a close encounter with one of the galaxies of the environment.  相似文献   

19.
We present circumstantial evidence that the central region of the edge-on S0 galaxy NGC 4570, which harbours a 150-pc scale nuclear disc in addition to its main outer disc, has been shaped under the influence of a small (∼ 500 pc) bar. This is based on the discovery of two edge-on rings, the locations of which are consistent with the inner Lindblad and ultraharmonic resonances of a rapidly tumbling triaxial potential. Observed features in the photometry and rotation curve correspond nicely with the positions of the main resonances, strengthening the case for a tumbling bar potential. The relative blue colour of the ILR ring, and the complete absence of any detected ISM, indicates that the nuclear ring is made of relatively young (≲ 2 Gyr) stars. We discuss a possible secular evolution scenario for this complex multicomponent galaxy, which may also apply to many other S0 galaxies with observed rings and/or multiple disc components.  相似文献   

20.
Summary. At a distance of 3.4 Mpc, NGC 5128 (Centaurus A) is by far the nearest active radio galaxy. It is often considered to be the prototype Fanaroff-Riley Class I ‘low-luminosity’ radio galaxy, and as such it plays an important role in our understanding of a major class of active galaxies. Its proximity has spawned numerous detailed investigations of its properties, yielding unrivalled but still incomplete knowledge of its structure and dynamics. The massive elliptical host galaxy is moderately triaxial and contains a thin, strongly warped disk rich in dust, atomic and molecular gas and luminous young stars. Its globular cluster ensemble has a bimodal distribution of metallicities. Deep optical images reveal faint major axis extensions as well as a system of filaments and shells. These and other characteristics are generally regarded as strong evidence that NGC 5128 has experienced a major merging events at least once in its past. The galaxy has a very compact, subparsec nucleus exhibiting noticeable intensity variations at radio and X-ray wavelengths, probably powered by accretion events. The central object may be a black hole of moderate mass. Towards the nucleus, rich absorption spectra of atomic hydrogen and various molecular species suggest the presence of significant amounts of material falling into the nucleus, presumably ‘feeding the monster’. Emanating from the nucleus are linear radio/X-ray jets, becoming subrelativistic at a few parsec from the nucleus. At about 5 kpc from the nucleus, the jets expand into plumes. Huge radio lobes extend beyond the plumes out to to 250 kpc. A compact circumnuclear disk with a central cavity surrounds the nucleus. Its plane, although at an angle to the minor axis of the galaxy, is perpendicular to the inner jets. The jet-collimating mechanism, probably connected to the circumnuclear disk, appears to precess on timescales of order a few times 10 years. This review summarizes the present state of knowledge of NGC 5128 and its associated radio source Centaurus A. Underlying physical processes are outside its scope: they are briefly referred to, but not discussed. Received 30 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号