首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate repeating aftershocks associated with the great 2004 Sumatra–Andaman (Mw 9.2) and 2005 Nias–Simeulue (Mw 8.6) earthquakes by cross-correlating waveforms recorded by the regional seismographic station PSI and teleseismic stations. We identify 10 and 18 correlated aftershock sequences associated with the great 2004 Sumatra and 2005 Nias earthquakes, respectively. The majority of the correlated aftershock sequences are located near the down-dip end of a large afterslip patch. We determine the precise relative locations of event pairs among these sequences and estimate the source rupture areas. The correlated event pairs identified are appropriately referred to as repeating aftershocks, in that the source rupture areas are comparable and significantly overlap within a sequence. We use the repeating aftershocks to estimate afterslip based on the slip-seismic moment scaling relationship and to infer the temporal decay rate of the recurrence interval. The estimated afterslip resembles that measured from the near-field geodetic data to the first order. The decay rate of repeating aftershocks as a function of lapse time t follows a power-law decay 1/tp with the exponent p in the range 0.8–1.1. Both types of observations indicate that repeating aftershocks are governed by post-seismic afterslip.  相似文献   

2.
Following a large-sized Bhuj earthquake (M s = 7.6) of January 26th, 2001, a small aperture 4-station temporary local network was deployed, in the epicentral area, for a period of about three weeks and resulted in the recording of more than 1800 aftershocks (-0.07 ≤M L <5.0). Preliminary locations of epicenters of 297 aftershocks (2.0 ≤M L <5.0) have brought out a dense cluster of aftershock activity, the center of which falls 20 km NW of Bhachau. Epicentral locations of after-shocks encompass a surface area of about 50 × 40 km2 that seems to indicate the surface projection of the rupture area associated with the earthquake. The distribution of aftershock activity above magnitude 3, shows that aftershocks are nonuniformly distributed and are aligned in the north, northwest and northeast directions. The epicenter of the mainshock falls on the southern edge of the delineated zone of aftershock activity and the maximum clustering of activity occurs in close proximity of the mainshock. Well-constrained focal depths of 122 aftershocks show that 89% of the aftershocks occurred at depths ranging between 6 and 25 km and only 7% and 4% aftershocks occur at depths less than 5 and more than 25 km respectively. The Gutenberg-Richter (GR) relationship, logN = 4.52 - 0.89ML, is fitted to the aftershock data (1.0<-M L<5.0) and theb-value of 0.89 has been estimated for the aftershock activity.  相似文献   

3.
Locally recorded data for eighteen aftershocks of a magnitude(mb) 4.6 earthquake occurring near Ukhimath in the Garhwal Himalaya were analysed. A master event technique was adopted to locate seventeen individual aftershock hypocentres relative to the hypocentre of the eighteenth aftershock chosen as the master event. The aftershock epicentres define an approximately 30 km2 rupture zone commensurate with the magnitude of the earthquake. The distribution of epicentres within this zone and the limited amount of first motion data support the view that a group of parallel, sub-vertical, sinistral strike-slip faults oriented N46°, transverse to the regional NW-SE trend of the Garhwal Himalaya, was involved in this seismic episode. Since the estimated focal depth range for aftershocks of this sequence is 3–14 km, we infer that this transverse fault zone extends through the upper crustal layer to a depth of 14 km at least.  相似文献   

4.
Hydroacoustic data from autonomous arrays and the U.S. Navy's Sound Surveillance System (SOSUS) provide an opportunity to examine the temporal and spatial properties of seismicity along portions of the slow-spreading Mid-Atlantic Ridge (MAR), intermediate-spreading Juan de Fuca Ridge (JdFR) and fast-spreading East Pacific Rise (EPR). Aftershock and foreshock events are selected from the hydroacoustic earthquake catalog using single-link cluster (SLC) analysis, with a combined space–time metric. In the regions examined, hydroacoustic data improve the completeness level of the earthquake catalog by 1.5–2.0 orders of magnitude, allowing the decay constant, p, of the modified Omori law (MOL) to be determined for individual sequences. A non-parametric goodness-of-fit test indicates six of the seven sequences examined are described well by a MOL model. The p-values obtained for individual ridge and transform sequences using hydroacoustic data are larger than that previously estimated from the analysis of a stacked sequence generated from teleseismic data. For three sequences along the Siqueiros, Discovery and western Blanco Transforms, p-values are estimated to be 0.94–1.29. The spatial distribution of aftershocks suggests that the mainshock rupture is constrained by intra-transform spreading centers at these locations. An aftershock sequence following a 7.1Ms thrust event near the northern edge of the Easter Microplate exhibits p=1.02±0.11. Within the sequence, aftershocks are located to the north of a large topographic ridge, which may represent the surface expression of the shallow-dipping fault that ruptured during the mainshock. Two aftershock sequences near 24°25′N and 16°35′N on the MAR exhibit higher p-values, 1.74±0.23 and 2.37±1.65, although the latter estimate is not well constrained because of the small number of aftershocks. Larger p-values along the ridge crest might reflect a hotter thermal regime in this setting. Additional monitoring, however, will be needed to determine if p-value differences between the ridge and transform sequences are robust. A 1999 sequence on the Endeavour segment of the JdFR, which has been correlated with changes in the hydrothermal system, is described poorly by the MOL model. The failure of the MOL model, the anomalously large number of earthquakes within the sequence and absence of a clearly dominant mainshock are inconsistent with aftershock activity and the simple tectonic origin that has been proposed previously for this sequence.  相似文献   

5.
张致伟  周龙泉  程万正  阮祥  梁明剑 《地球科学》2015,40(10):1710-1722
为研究2013年4月20日芦山Mw6.6地震的发震构造及孕震机理, 基于4月20日—6月1日地震序列中114次M≥3.0余震震源机制解, 深入分析了余震震源机制及震源区应力场的时空分布特征, 获得的主要认识如下: (1)芦山M≥3.0余震以逆冲型为主, 走滑型次之, 正断型最少, 震源机制P轴方位一致性较好, 以近NWW-SEE为优势方向, 倾角分布在0~30°, 表明余震活动主要受龙门山断裂所在的区域应力场控制; (2)芦山余震区压应力S1方位存在明显的局部空间分区差异, 以主震震中为界, 余震区南边S1方向总体呈NWW方向, 而余震区北边S1方向表现出由NW经EW向NE的逆时针旋转, 可能反映了余震区北边发震断层错动以逆冲为主兼有一定的走滑分量; (3)压应力S1方位随时间的变化不明显, 呈近NWW方向, 但其倾角逐渐变水平, 应力张量方差逐渐变大, 震源机制错动类型始终以逆冲为主, 随时间变的相对紊乱, 反映了震源区应力场随时间的调整变化特性; (4)深度剖面结果显示压应力方位与发震断层走向的夹角在80°~120°, 即近乎垂直, 震源断层面向NW倾斜, 芦山余震活动受控于近垂直发震断裂的挤压作用, 属于典型的逆冲断层.   相似文献   

6.
The earthquake (Ms= 5.3) of 20 March 1992 and its aftershocks, which occurred near the volcanic island complex of Milos, South Aegean, Greece, are studied on the basis of filed observations and instrumental data. The mainshock caused some building damage, the maximum intensity of VI+ (MM) being assigned to Triovasalos, Milos. Ground cracks, liquefaction in soil, landslides and rockfalls were observed in Milos. Liquefaction took place at an apparently anomalously long epicentral distance (D= 12 km) and is associated with unusually small earthquake magnitude. Abnormal animal behaviour was reported no longer than twelve hours before the mainshock. The b-value (= 1.02) of the G–R relation for the aftershock sequence, the exponentially decreasing number of aftershocks with time, and the difference (= 0.5) in magnitude between the mainshock and its largest aftershock imply that the origin of these earthquakes is tectonic and not associated with the volcanic field of Milos.  相似文献   

7.
The August 1, 1975 earthquake near Oroville, California, occurred along the Sierra foothills in a region characterized by occasional moderate earthquakes. Several earthquakes in the general region, including those in 1869, 1875, and 1909, appear to have had significant aftershock sequences. The general character of the aftershock sequence of the Oroville earthquake thus does not appear to be anomalous when measured against the known seismic history of this area.

Four smoked-paper micro-earthquake recorders were deployed immediately following the occurrence of the main earthquake to attempt to define the structural associations of the principal earthquake by location and analysis of aftershocks. Focal locations for 243 micro-earthquakes in the magnitude range of 1–3 were selected from the 30-day period (August 2–September 1), during which monitoring was continued. The aftershocks clearly define a planar surface striking north–south and dipping west at 62° from the surface to a depth of about 12 km. Aftershocks during the first two days of monitoring defined a surface of active faulting of approximately 100 km2. Extension of this surface both to the north and south began on August 5 at focal depths of 5–10 km, resulting in a total ruptured area of approximately 125 km2. The number of aftershocks per day decreased at the rate oft−1.1, but the decay curve was punctuated by several secondary aftershock sequences. No. direct relationship between the aftershock sequence and the presence of Oroville Reservoir was observed.  相似文献   


8.
A 12-station temporary microearthquake network was established by the Geological Survey of India for aftershock monitoring of the January 26th, 2001 Bhuj earthquake (M w 7.6) in the Kutch district of Gujarat state, western India. The epicentres of the aftershocks show two major trends: one in the NE direction and the other in the NW direction. Fault-plane solutions of the best-located and selected cluster of events that occurred along the NE trend, at a depth of 15–38 km, show reverse faulting with a large left-lateral strike-slip motion, which are comparable with the main-shock solution. The NW trending upper crustal aftershocks at depth <10 km, on the other hand, show reverse faulting with right-lateral strike-slip motion, and the mid crustal and lower crustal aftershocks, at a depth of 15–38 km, show pure reverse faulting as well as reverse faulting with right-lateral and left-lateral strike-slip motions; these solutions are not comparable with the main-shock solution. It is inferred that the intersection of two faults has been the source area for stress concentration to generate the main shock and the aftershocks.  相似文献   

9.
The Van earthquake (M W 7.1, 23 October 2011) in E-Anatolia is typical representative of intraplate earthquakes. Its thrust focal character and aftershock seismicity pattern indicate the most prominent type of compound earthquakes due to its multifractal dynamic complexity and uneven compressional nature, ever seen all over Turkey. Seismicity pattern of aftershocks appears to be invariably complex in its overall characteristics of aligned clustering events. The population and distribution of the aftershock events clearly exhibit spatial variability, clustering-declustering and intermittency, consistent with multifractal scaling. The sequential growth of events during time scale shows multifractal behavior of seismicity in the focal zone. The results indicate that the extensive heterogeneity and time-dependent strength are considered to generate distinct aftershock events. These factors have structural impacts on intraplate seismicity, suggesting multifractal and unstable nature of the Van event. Multifractal seismicity is controlled by complex evolution of crustal-scale faulting, mechanical heterogeneity and seismic deformation anisotropy. Overall seismicity pattern of aftershocks provides the mechanism for strain softening process to explain the principal thrusting event in the Van earthquake. Strain localization with fault weakening controls the seismic characterization of Van earthquake and contributes to explain the anomalous occurrence of aftershocks and intraplate nature of the Van earthquake.  相似文献   

10.
A catalogue of aftershocks of the 2007 Nevelsk earthquake (M w = 6.2) was prepared on the basis of the data from the local network of digital seismic stations established on the southern part of Sakhalin Island. The parameters of the aftershock hypocenters were determined using the method of the seismic wave travel time inversion. The errors in the determination of the coordinates of the seismic events were analyzed. The particularities of the spatiotemporal distribution of the aftershocks in the source zone of the earthquake were established. It was shown that a strong aftershock was a subsource earthquake with its own source zone. This explains the disagreement between the energetic characteristics and the size of the aftershock zone of the Nevelsk earthquake.  相似文献   

11.
The aftershock sequence of the September 30th, 1993 Killari earthquake in the Latur district of Maharashtra state, India, recorded by 41 temporary seismograph stations are used for estimating 3-D velocity structure in the epicentral area. The local earthquake tomography (LET) method of Thurber (1983) is used. About 1500P and 1200S wave travel-times are inverted. TheP andS wave velocities as well asV P/VSratio vary more rapidly in the vertical as well as in the horizontal directions in the source region compared to the adjacent areas. The main shock hypocentre is located at the junction of a high velocity and a low velocity zone, representing a fault zone at 6–7 km depth. The estimated average errors ofP velocity andV P/VSratio are ±0.07 km/s and ±0.016, respectively. The best resolution ofP and S-wave velocities is obtained in the aftershock zone. The 3-D velocity structure and precise locations of the aftershocks suggest a ‘stationary concept’ of the Killari earthquake sequence.  相似文献   

12.
Yaghmaei-Sabegh  Saman  Wang  Hongwei 《Natural Hazards》2022,111(3):2579-2599

The characteristics of aftershocks can be quite different from those of mainshocks. However, most of the works in the past have generally focused on the aftershocks of strong earthquakes, while some moderate earthquakes can cause aftershocks with magnitudes close to the mainshocks. This paper focuses on the aftershocks characteristics of the 2012 Varzaghan–Ahar Doublet event (Mw?=?6.4, 6.2), northwest of Iran. Numerous aftershocks with magnitudes 3.7–5.5 recorded by the local seismic stations provide useful data to study the spectral characteristics at various periods. The predictive capability of the 2008 Next Generation Attenuation along with two regional models has been examined by several aftershock records obtained during these events. This paper is the first attempt made to compare the predictive capability of modern models based on significant aftershock data obtained for these two moderate events. Results confirmed that the ground motion models which have been derived based on larger-magnitude events should not directly be extrapolated to predict aftershock ground motions with magnitude smaller than 5.5, especially when we use relationships that developed without considering aftershock data. The residual analysis showed that the model of Abrahamson and Silva (Earthq Spectra, 24(1): 67–97, 2008) performed the best overall predictions in this study. However, this model performs poorly in the short period of 0.2 s at distances greater than 50 km which underestimates the spectral values for this case.

  相似文献   

13.
The most of shallow earthquakes are followed, just after the main shock, by increased residual seismicity known as “aftershocks” or “aftershock sequences”. Because of their disparity in time and space, aftershock sequences are more or less obvious and their productivity is spread out in time. Several studies have been regularly proposed to explain or to understand the mechanisms of the occurrence and the behaviour of these small earthquakes. In a theoretical context, many factors can induce the aftershock triggering: residual friction, subcritical crack growth, pore fluid flow etc. Just after the occurrence of the most destructive main shock of the 21 May 2003 Boumerdes (Algeria) earthquake, a wide sequence of aftershocks was recorded at different geographical locations and with various magnitudes. Based on the fact that the region of Boumerdes (40 km east of the capital Algiers) did not develop major earthquakes in the past, a geostatistical investigation of the data for this aftershock sequence is a valuable input for better seismogeological identification of this area. In the present analysis, after an overview of the geological factors in the likely occurrence of the earthquake, fundamental statistical parameters were chosen: the b value from the Gutenberg–Richter law, the p factor of the extracted respectively from the b value and the fractal variogram defined as a graphic tool to describe the continuity or the roughness of data. Jointly to the geostatistical parameters provided by the variogram like the fractal dimension. The main objective of the calculation and interpretation of these parameters is oriented towards a better understanding of the seismicity of the region of Boumerdes (Algeria) now classified as seismogenic zone.  相似文献   

14.
A damaging and widely felt moderate (Mw 5.0) earthquake occurred in the Talala region of Saurashtra, Gujarat (western India) on November 6, 2007. The highly productive sequence comprised about 1300 micro earthquakes (M > 0.5) out of which 325 of M ? 1.5 that occurred during November 6, 2007–January 10, 2008 were precisely located. The spatial aftershock distribution revealed a NE–SW striking fault in accordance with the centroid moment tensor solution, which in turn implies left-lateral motion. The orientation and sense of shear are consistent with similarly orientated geological fault identified in the area from satellite imagery and field investigation.The aftershocks temporal decay, b-value of frequency–magnitude distribution, spatial fractal dimension, D, and slip ratio (ratio of the slip occurred on the primary fault to the total slip) were examined with the purpose to identify the properties of the sequence. The high b-value (1.18 ± 0.01) may be attributed to the paucity of the larger (M ? 4.0) aftershocks and reveals crustal heterogeneity and low stress regime. The high p-value (1.10 ± 0.39), implying fast decay rate of aftershocks, evidences high surface heat flux. A value of the spatial fractal dimension (D) equal to 2.21 ± 0.02 indicates random spatial distribution and source in a two-dimensional plane that is being filled-up by fractures. A slip ratio of 0.42 reveals that more slip occurred on secondary fault systems.The static Coulomb stress changes due to the coseismic slip of the main shock, enhanced off fault aftershock occurrence. The occurrence of a moderate earthquake (Mw 4.3) on October 5, 2008 inside a region of positive Coulomb stress changes supports the postulation on aftershock triggering. When the stress changes were resolved on a cross section including the stronger (M4.8) foreshock plane that is positioned adjacent to the main fault, it became evident that the activity continued there due to stress transfer from the main rupture.  相似文献   

15.
四川芦山余震序列空间格局分析   总被引:1,自引:0,他引:1  
以芦山3级以上余震数据为基础,运用GIS等方法对余震空间格局进行了研究。结果表明:1.点格局的最邻近指数为0.72,偏离随机分布,暗示余震分布具有一定聚集性:芦山、宝兴、天全是余震分布的中心区域,占总余震的87%,高震级余震也多发于此;2.距离关联维分析表明,余震在2.5~10.5km、17~22km区间内关联程度显著;32~35.5km、36~40km区间也存在关联特征,该结果与地震烈度区长短半轴、地震破裂面长度较为吻合。研究探索了余震空间点格局,对分析、判断余震特征和灾害预防具有借鉴意义。  相似文献   

16.
17.
The Geological Survey of India (GSI) established a twelve-station temporary microearthquake (MEQ) network to monitor the aftershocks in the epicenter area of the Bhuj earthquake (M w7.5) of 26th January 2001. The main shock occurred in the Kutch rift basin with the epicenter to the north of Bhachao village, at an estimated depth of 25 km (IMD). About 3000 aftershocks (M d ≥ 1.0), were recorded by the GSI network over a monitoring period of about two and half months from 29th January 2001 to 15th April 2001. About 800 aftershocks (M d ≥ 2.0) are located in this study. The epicenters are clustered in an area 60 km × 30 km, between 23.3‡N and 23.6‡N and 70‡E and 70.6‡E. The main shock epicenter is also located within this zone. Two major aftershock trends are observed; one in the NE direction and other in the NW direction. Out of these two trends, the NE trend was more pronounced with depth. The major NE-SW trend is parallel to the Anjar-Rapar lineament. The other trend along NW-SE is parallel to the Bhachao lineament. The aftershocks at a shallower depth (<10km) are aligned only along the NW-SE direction. The depth slice at 10 km to 20 km shows both the NE-SW trend and the NW-SE trend. At greater depth (20 km–38 km) the NE-SW trend becomes more predominant. This observation suggests that the major rupture of the main shock took place at a depth level more than 20 km; it propagated along the NE-SW direction, and a conjugate rupture followed the NW-SE direction. A N-S depth section of the aftershocks shows that some aftershocks are clustered at shallower depth ≤ 10 km, but intense activity is observed at 15–38 km depth. There is almost an aseismic layer at 10–15 km depth. The activity is sparse below 38 km. The estimated depth of the main shock at 25 km is consistent with the cluster of maximum number of the aftershocks at 20–38 km. A NW-SE depth section of the aftershocks, perpendicular to the major NE-SW trend, indicates a SE dipping plane and a NE-SW depth section across the NW-SE trend shows a SW dipping plane. The epicentral map of the stronger aftershocksM ≥ 4.0 shows a prominent NE trend. Stronger aftershocks have followed the major rupture trend of the main shock. The depth section of these stronger aftershocks reveals that it occurred in the depth range of 20 to 38 km, and corroborates with a south dipping seismogenic plane.  相似文献   

18.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

19.
李平恩  廖力  奉建州 《地球科学》2022,47(6):2149-2164
2019年6月17日四川长宁县发生6.0级地震,该次地震余震活动频度高、强度大,其中超过5.0级的强余震就有4次,具有不同于以往6.0级地震的独特特征.余震活动与震后区域应力变化密切相关,为研究它们之间的关系,考虑区域主要活动构造、地表起伏和深部反演结果,建立长宁地区岩石圈三维黏弹性有限元模型.采用数值方法重建基本符合研究区GPS观测和最大水平主压应力方向测量结果的现今构造背景应力场.进而依次模拟了长宁6.0级地震和5.0级以上强余震序列.通过计算库仑破裂应力变化研究了震后应力演化与余震分布,以及主震和5.0级强余震序列之间的关系.研究表明,长宁6.0级地震的发生可能与区域内非构造加载因素有关,余震活动明显受震后区域应力变化的控制.长宁地震后,于滩-长宁背斜在10 km深度应力得到充分释放,库仑破裂应力明显减小;而在3 km深度库仑破裂应力明显增加,应力水平仍然较高.   相似文献   

20.
A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated.The epicenters for four large (M 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58° or 73°, respectively. A preferred nodal-plane dip of 36° was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号