首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
波浪会促进海水中溶质向海底沉积物运移,但已有研究大多未考虑海床(海底沉积物)变形效应的影响。为揭示波浪作用下海床土变形对溶质运移过程的影响机制,构建了考虑海床土变形影响的溶质运移计算模型,对波浪作用下溶质向砂质海底沉积物中的运移过程进行模拟。结果表明:海床土变形会增大孔隙水流速,进而增大溶质纵向水动力弥散系数,增强溶质运移的机械弥散作用,促进溶质向沉积物中运移;考虑海床变形时的溶质最大纵向水动力弥散系数可达不考虑海床变形时的8.5倍,约为分子扩散系数的545倍;海床土剪切模量越小,土体变形效应越明显,对溶质运移过程的影响越大;海床土饱和度的降低,会进一步加速波浪作用下溶质向海底沉积物的运移过程。  相似文献   

2.
扩散是低渗透系数情况下溶质迁移的主要方式,目前尚没有测定高塌落度防渗墙填料扩散系数的试验方法。根据沥出试验原理,将处于流动状态的填料用半透膜包裹进行透析试验,通过有限圆柱中溶质迁移解析解对溶质迁移过程进行拟合求其扩散系数,探讨了试验和数据处理的相关问题,研究了膨润土含量和盐浴浓度对扩散系数的影响规律。结果表明,随拟合天数增加,填料中NaCl有效扩散系数减小,而误差增大;高塌落度填料中溶质迁移明显比压实土样中快,按拟合误差小于0.5%作为试验数据取舍依据,这一误差要求实际上是对溶质迁移以扩散为主导这一条件的量化,保证了采用纯扩散解析解进行数据拟合的合理性;扩散系数随填料中膨润土含量增加而减小,随盐浴浓度增加而减小,但在试验范围内数值变化不大,透析试验是快速测定防渗墙填料中溶质有效扩散系数的可行方法。  相似文献   

3.
迄今为止,注入时间和静水压力对溶质在深层承压地热水中的运移规律影响研究少有报道。通过模拟35℃的低温地热环境,开展了注入时间1,2,3,4,5 h以及静水压力0,6,9 MPa条件下Cl-的运移柱模拟试验。采用CXTFIT 2.1软件进行数值模拟,探讨了孔隙型热储砂土中Cl-的运移规律和影响因素。结果表明:在模拟的低温孔隙型热储层中,不同注入时间和静水压力下,Cl-的运移曲线均呈正态对称分布,一维对流弥散(CDE)模型也可较好地表征其穿透曲线,因此溶质扩散过程符合菲克定律。注入时间的不同,会引起Cl-的穿透曲线、运移参数发生变化,这与不同注入时间条件下溶质注入总量、柱内溶质浓度差以及分子扩散能力不同有关。在不同静水压力条件下,弥散系数从0 MPa的25.22 cm2/h增加到9MPa的36.13 cm2/h,分子扩散系数、机械弥散系数以及弥散度也随之增大,因此溶质的弥散作用随静水压力的增大而增强。研究结果对于丰富地下水的溶质运移理论具有重要意义。  相似文献   

4.
The characteristics of nitrate vertical transport in soils collected from Libo and Puding in Guizhou Province were studied by simulating soil column in laboratory. The results were as follows: (1) Vertical transport velocity of nitrate decreased, and the breakthrough curves (BTCs) of nitrate were more dispersed, in each horizon from surface layer to bottom layer in every soil profile. As rocky desertification progressed, the BTCs experienced a gentle up and down trend, and tailing was more obvious. (2) An analytical solute transport model (CXTFIT 2.0) was used to estimate nitrate dispersion coefficient (D) and average pore water velocity (V) from the observed BTCs. The results showed that CXTFIT 2.0 model was suitable in fitting the nitrate transport in these soils. The dispersion coefficient was found to be a function of average pore water velocity. (3) The transport of nitrate was mainly affected by the soil structural coefficient. As soil structural coefficient decreased, nitrate outflow was retarded, and the peak concentration was reduced. Soil bulk density, organic matter, and clay also affected the vertical transport of nitrate. Low bulk density, clay content, and high organic matter content were each associated with faster nitrate transport.  相似文献   

5.
为研究江汉平原—大别山区过渡带黏性层状土中溶质迁移的规律,以保守性阴离子Br−为示踪剂,通过等温吸附试验、一维弥散试验、HYDRUS-1D软件模拟反演手段,研究了Br−在黏性层状土中的吸附参数、迁移规律,模拟反演其弥散参数。结果表明:(1)Freundlich模型和Langmuir模型均能较好的拟合吸附试验结果,随着土壤中黏粒比例的增大,土壤对Br−的饱和吸附量有所增加;(2)层状土中土壤质地与结构均会影响穿透曲线的形状,但一维饱和土柱中的弥散过程主要取决于含水介质系统中黏性颗粒的占比,黏粒的增加会对溶质运移产生阻碍作用;(3)通过HYDRUS-1D软件构建模型反演弥散参数,R2均大于0.991,拟合效果较好,分析发现层状土中无论土壤组成类型还是层厚及排序的影响,其本质都是改变了土壤的平均孔隙流速从而影响弥散作用,平均孔隙流速越小其弥散系数越小;(4)试验中粉质黏土弥散系数约为0.005~0.048 cm2/d,远远小于下部砂土弥散系数0.524~7.477 cm2/d,差值达到了至少两个数量级,表明研究区内厚层黏土为控制地层,会较大程度阻碍地下水中溶质运移,上部含水层中的污染物或有机质很难穿透该层向下迁移,具有良好的截污性能。研究结果对江汉平原过渡带地下水环境保护、水质治理具有重要应用价值。  相似文献   

6.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

7.
为揭示河床形态特征引起的潜流交换规律,构建循环式水槽装置,通过NaCl示踪对比分析了4种河床地形驱动下的潜流交换规律,并基于扩散理论探讨了潜流交换与地表水水动力及床沙渗透特性之间的关系.结果表明,潜流交换可以发生在平坦河床地形,且交换速率随地形起伏度和雷诺数的增大而增大;在相似的地形条件下,地表流速是影响潜流交换速率的主导因素,地表水深对潜流交换速率影响较弱;此外,分析表明,有效扩散系数与河床特征粒径之间具有2次方幂率函数关系,且与河床渗透系数成正比;交换深度d正比于雷诺数Re的1/2次方.  相似文献   

8.
For materials of very low hydraulic conductivity used in the landfill liner systems, e.g., natural clay liners, soil-cement liners, etc., diffusion characteristics should be evaluated, as the transport mechanism of contaminant through them is diffusion controlled. Studies on the diffusion characteristics of the hardened liner materials, such as the soil cement, are relatively few compared with those of clayey soils. In this paper, diffusive characteristics of hardened liner materials (HLMs) applied to the liner system of Sudokwon Metropolitan Landfill in Korea, were studied. Laboratory pure diffusion column tests in the pure- and the advection-diffusion status were performed for the chemicals, NaCl, KCl, and CaCl2. To evaluate the diffusion coefficient of a HLMs system, a one-dimensional numerical transport program was developed for use in a multi-layered HLMs system. The range of dispersion coefficients of advection diffusion column tests was a little narrower than that of diffusion coefficients of pure diffusion tests, although the two coefficients were quite close. The effective diffusion coefficients of chloride ions of a HLMs were about a half of those in clayey soil due to the high density by compaction and curing. Diffusion coefficients of chloride ions in this study were correlated closely with hydraulic conductivities of the materials tested and were consistent with work in the literature.  相似文献   

9.
尽管连续混合器模型已经广泛应用于土壤中溶质迁移转化规律计算,但却仅限于饱和土壤条件。通过采用Kostiakov公式描述非稳定入渗过程,并结合活塞假设计算入渗过程中土壤水分的运动和分布规律,将连续混合器模型扩展应用于非饱和土壤的盐分淋洗过程计算,并求出了模型的解析解。分析发现,在一定的土壤质地、初始含水率剖面和初始含盐量剖面下,模型的计算结果会受到土层划分厚度的影响,而合理的土层厚度又与饱和导水率和溶质弥散系数之间存在量纲一的函数关系。当土层厚度选取合理时,连续混合器模型与HYDRUS-1D的计算结果十分接近,采用该模型模拟试验土壤盐分淋洗过程,显示了较好的计算精度。  相似文献   

10.
The interaction between channel geometry, flow, sediment transport and deposition associated with a midstream island was studied in a braided to meandering reach of the Calamus River, Nebraska Sandhills. Hydraulic and sediment transport measurements were made over a large discharge range using equipment operated from catwalk bridges. The relatively low sinuosity channel on the right-hand side of the island carries over 70% of the water discharge at high flow stages and 50–60% at low flow stages. As a result, mean velocity, depth, bed shear stress and sediment transport rate tend to be greater here than in the more strongly curved left-hand channel. The loci of maximum flow velocity, depth and bed shear stress are near the centre of the channel upstream of the island, but then split and move towards the outer banks of both channels downstream. Variations in these loci depend on the flow stage. Topographically induced across-stream flows are generally stronger than the weak, curvature-induced secondary circulations. Water surface topography is controlled mainly by centrifugal accelerations and local changes in downstream flow velocity. The averaged water surface slope of the study reach varies very little with discharge, having values between 0·00075 and 0·00090. As bed shear stress generally varies in a similar way to mean velocity, friction coefficients vary little, normally being in the range 0·07–0·13. These values are similar to those in straight channels with sandy dune-covered beds. Bedload is moved mainly as dunes at all flow stages. Grain size is mainly medium sand with coarse sand moved in thalwegs adjacent to the cut banks, and with fine sand at the downstream end of the island. These patterns of flow velocity, depth, water surface topography, bed shear stress, bedload transport rate and mean grain size can be accurately predicted using theoretical models of flow, bed topography and sediment transport rate in single river bends, applied separately to the left and right channels. During high flow stages deposition occurs persistently near the downstream end of the island, and cut banks are eroded. Otherwise, erosion and deposition occurs only locally within the channel as discharge varies. Abandonment and filling of a strongly curved channel segment may occur by migration of an upstream bar into the channel entrance at a high flow stage.  相似文献   

11.
Non-dimensional solutions to the equations for the combined advective and diffusive one-dimensional transport of heat and solute in a layer are derived for fixed temperature/concentration on the boundaries and initial conditions of a linear gradient across the layer or a step function at the lower boundary. The solutions allow distinction of regimes in which advective or diffusive transport of either heat or solute predominate as a function of fluid flux, time and a length scale. The much lower diffusive coefficients for solute than heat results in a significant range of length scales and fluid flux rates characterised by advection of matter and diffusion of heat. The advective velocity of a component is a function of its fluid:rock partition coefficient. The most rapidly transported tracers which partition largely into the fluid phase, such as He, will travel orders of magnitude faster than heat or compatible solutes such as oxygen. Geochemical profiles in boundary layer regions where both advective and diffusive transport are significant are shown to be particularly informative as to properties of the rocks related to fluid flow such as porosity, permeability, time scales and fluid flux rates. The importance of advection can be directly estimated from the asymmetry of the geochemical profiles across individual layers.  相似文献   

12.
Breakthrough curves (BTCs) of chloride displaced through columns of loessial soil aggregates of different sizes were measured under saturated steady flow conditions. The data were simulated using three conceptual models. Model I (CDE) assumed that all soil water was mobile and physical equilibrium existed in the system. Model II (two-region model) partitioned the soil water into mobile and immobile regions, and convective diffusive solute transport was limited to the mobile water region. Model III (two-flow region model) also divided the soil water into two regions based on their flow velocities, but both of the regions had a non-zero flow rate. Transfer of the chloride solute between the two soil water regions was assumed to occur at a rate proportional to the difference in solute concentration. The two unknown parameters in model I, three in model II, and four in model III were estimated by fitting the experimental data. The three models could well describe all the BTCs measured for columns packed with all the aggregate sizes at the low pore water velocity (0.68 cm/h); however, the values of the fitted parameters varied greatly. The Peclet numbers derived from both the two-region (model II) and two-flow region (model III) models behaved similarly and increased with increases in aggregate size. But the Peclet numbers derived from the convection dispersion equation (model I) were about two orders of magnitude greater than those derived from the other two models. The mobile water fraction obtained for the two-flow region model decreased with increases of aggregate size. The mass transfer coefficient decreased with an increase in pore water velocity due to the shorter residence time of the chloride solute in the soil columns.  相似文献   

13.
污染河水中氨氮对浅层地下水的影响   总被引:14,自引:2,他引:12  
氨氮是目前地表水和地下水的一个重要污染源.室内试验选用3种天然砂土作为渗透介质, 以生活污水模拟污染河水, 经过近1 0个月的土柱试验, 发现氨氮在粗砂中第1 7天达吸附饱和, 第1 8— 1 4 0天去除率小于1 0 %, 在中砂中第1 30—1 4 0天吸附饱和, 以后均发生解吸出水浓度大于进水浓度.野外实验凉水河的氨氮浓度为4 6.86mg/L和2 6.95mg/L时, 地下水的氨氮浓度均小于1.1 0mg/L, 表明凉水河对地下水的实际影响不如室内大, 原因是底泥、河床下部渗透介质的厚度和岩性以及河水渗漏量的影响.排污河还清试验表明, 排污河清淤、灌入清水后, 会很明显地把排污河下部渗透介质中的氨氮带到地下水中, 造成地下水的二次污染.   相似文献   

14.
To verify the applicability of the time-continuous electrical conductivity (EC) measurement in analyzing the contaminant movement in the subsurface, a new column test device employing non-destructive four-electrode sensors was developed. Using the seawater to create a simple one-dimensional steady-flow condition, laboratory transport experiments were conducted and the EC breakthrough curves at different distances were obtained. Comparison between the EC breakthrough curves obtained from the EC sensors and those from the effluent solute chemical analysis showed that the estimated resident concentration from the EC breakthrough curves are useful in understanding solute transport in soils. The pore water velocity and longitudinal dispersion coefficient estimated using the computer code, CXTFIT, were found to be slightly underestimated, especially at sensors located at smaller distances from the outlet boundary. Results showed that the developed column test device employing the four-electrode sensors proposed in this study provides a non-destructive, convenient, and inexpensive means of evaluating the seawater transporting in soils.  相似文献   

15.
刘飞  董占地 《水科学进展》1990,31(4):565-574
以北京昌平未来科技城试验基地的降雨强度为降雨条件,通过室内降雨试验平台,研究了4种典型不透水下垫面(沥青、砼面、SBS改性沥青和砼方砖)和4种典型透水下垫面(草坪砖A、草坪砖B、风积砂砖A和风积砂砖B)分别在8种恒定雨强条件下形成薄层产流后的糙率系数、沿程阻力系数和径流系数的变化过程。结果显示:平面尺寸、表面光滑度、材质对不透水下垫面的糙率和沿程阻力系数影响较为明显;而结构、材质对透水下垫面的糙率和沿程阻力系数影响较为明显;两类下垫面的糙率值和沿程阻力系数均随雨强增加呈现减小的变化趋势,但变化的幅度较小,之后逐渐趋于稳定;两类下垫面的径流系数在不同雨强下保持相对稳定。  相似文献   

16.
刘飞  董占地 《水科学进展》2020,31(4):565-574
以北京昌平未来科技城试验基地的降雨强度为降雨条件,通过室内降雨试验平台,研究了4种典型不透水下垫面(沥青、砼面、SBS改性沥青和砼方砖)和4种典型透水下垫面(草坪砖A、草坪砖B、风积砂砖A和风积砂砖B)分别在8种恒定雨强条件下形成薄层产流后的糙率系数、沿程阻力系数和径流系数的变化过程。结果显示:平面尺寸、表面光滑度、材质对不透水下垫面的糙率和沿程阻力系数影响较为明显;而结构、材质对透水下垫面的糙率和沿程阻力系数影响较为明显;两类下垫面的糙率值和沿程阻力系数均随雨强增加呈现减小的变化趋势,但变化的幅度较小,之后逐渐趋于稳定;两类下垫面的径流系数在不同雨强下保持相对稳定。  相似文献   

17.
大型浅水湖泊水动力模型不确定性和敏感性分析   总被引:5,自引:0,他引:5       下载免费PDF全文
选取国内外常用的水动力学模型(EFDC)和典型的浅水湖泊(太湖),采用拉丁超立方取样(LHS),研究湖泊水动力模块中常用的5个重要参数(风拖曳系数、床面粗糙高度、涡粘性系数、紊流扩散系数以及风遮挡系数)对湖体水位和流速的影响。结果表明:针对大型浅水湖泊,湖泊岸线形状和湖底地形、湖泊周围地形、湖泊水面风场对模拟结果产生决定性影响。尤其是在湖湾区和周边地形比较复杂的地区,风场参数对水动力模拟结果不确定性的贡献率最大。在垂向上,表层流速受到参数不确定性的影响最大,底层次之,中层最小。床面粗糙高度对水动力模拟结果不确定性贡献率较风场参数要小,水体涡粘滞系数和扩散系数影响则更小。故在选择大型浅水湖泊水动力模型参数时,要充分考虑湖泊岸线和周围地形,着重率定风场参数以及床面粗糙高度。  相似文献   

18.
Understanding flow and transport in low-permeability media is very important in the context of nuclear waste disposal, oil and gas reservoirs and long term evolution of groundwater systems. In low-permeability media, transport by diffusion is often the most important mass transport process. This study investigates the effect of the heterogeneity of diffusion parameters on mass transport in low-permeability media. A geostatistical approach for integrating heterogeneity of diffusion parameters in groundwater flow and transport models is proposed and applied to the Toarcian argillites in France which are studied in the framework of feasibility of storing radioactive waste in deep clayey massifs. Stochastic fields of the diffusion parameters of the Toarcian argillites (France) are generated based on 64 measured values of diffusion coefficient and diffusion accessible porosity and used as input for a 3D local-scale groundwater flow and transport model. The chloride concentrations computed by these heterogeneous models are compared to the measured chloride concentrations and to concentrations calculated with a model in which the Toarcian argillites are subdivided into several homogeneous zones. The heterogeneous simulations result in a slightly better correspondence between measured and calculated values and have the additional advantage that the measured diffusion coefficient values in the Toarcian are perfectly honored in the model. This study shows that small-scale variability of diffusion parameters has a significant effect on solute concentrations and omitting this heterogeneity may be a problem in transport calculations in low-permeability media, depending on the specific setting and objectives of the study.  相似文献   

19.
薄层水流速度测量系统的研究   总被引:14,自引:0,他引:14       下载免费PDF全文
根据水流影响电解质扩散和其导电特性的分析,结合电解质脉冲在水流中迁移的数学模型,设计了薄层水流速度测试系统。用Visual Basic语言编写了操作系统,实现了数据采集、参数计算和分析自动化。实验和模拟结果表明,模拟水槽实验中用流量法测量的流速和电解质扩散法测量的水流速度误差很小,说明用此系统测量浅层水流的流速是可行的。  相似文献   

20.
A number of models have been established to simulate the behaviour of solute transport due to chemical pollution, both in croplands and groundwater systems. An approximate polynomial solution to convection–dispersion equation (CDE) based on boundary layer theory has been verified for the use to describe solute transport in semi-infinite systems such as soil column. However, previous studies have only proposed low order polynomial solutions such as parabolic and cubic polynomials. This paper presents a general polynomial boundary layer solution to CDE. Comparison with exact solution suggests the prediction accuracy of the boundary layer solution varies with the order of polynomial expression and soil transport parameters. The results show that prediction accuracy increases with increasing order up to parabolic or cubic polynomial function and with no distinct relationship between accuracy and order for higher order polynomials (\(n\geqslant 3\)). Comparison of two critical solute transport parameters (i.e., dispersion coefficient and retardation factor), estimated by the boundary layer solution and obtained by CXTFIT curve-fitting, shows a good agreement. The study shows that the general solution can determine the appropriate orders of polynomials for approximate CDE solutions that best describe solute concentration profiles and optimal solute transport parameters. Furthermore, the general polynomial solution to CDE provides a simple approach to solute transport problems, a criterion for choosing the right orders of polynomials for soils with different transport parameters. It is also a potential approach for estimating solute transport parameters of soils in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号