首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glaciers being very sensitive to climate change have been identified as one of the best indicators of climate change and evidences have proved that most of the Himalayan glaciers have receded with an increased rate during the recent past under the influence of global warming. Lichenometric study was carried out on the moraines of Milam glacier (located in Pithoragarh district of Uttarakhand) with the help of lichen species Dimelaena oreina having an average annual growth rate of 1.31 mm. The study revealed that Milam glacier has receded 1450 m in last 69.37 years with an average recession rate of 20.90 m/year. Since lichenometric studies are cost effective and ecofriendly in comparison to carbon dating, satellite and remote sensing based studies and also reliable, hence, it should be promoted in Himalaya which is an abode of glaciers.  相似文献   

2.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

3.
Lichenometry is an extremely useful technique in dating moraine ridge and recent glacier retreat in polar and alpine regions. The study relates the size of the lichen thallus to the minimum age of the exposure of the surface on which it grows which consequently helps in assessment of the age of the boulders. The Lichenometric studies are carried out in Kupup and Thangu area of eastern Himalaya in Sikkim and Thajiwas glacier in Ganderbal district of north western Himalaya of Jammu and Kashmir with the help of diameters of a common crustose lichen Rhizocarpon geographicum growing luxuriantly on exposed boulder. The Thajiwas glacier showed retreat of 200 m in 279 years while in Thangu and Kupup area of eastern Himalaya the retreat was estimated as 200 m in 100 and 91 years respectively. The rate of retreat was slightly more faster in eastern Himalayan (20 mm/century) than the north-western Himalaya region (18.5mm/century).  相似文献   

4.
Dating moraines by lichenometry enabled us to reconstruct glacier recession in the Bolivian Andes since the Little Ice Age maximum. On the 15 proglacial margins studied, we identified a system of ten principal moraines that marks the successive positions of glaciers over the last four centuries. Moraines were dated by performing statistical analysis of lichen measurements based on the extreme values theory. Like glaciers in many mid-latitude mountain areas, Bolivian glaciers reached their maximal extent during the second half of the 17th century. This glacier maximum coincides with the Maunder minimum of solar irradiance. By reconstructing the equilibrium-line altitude and changes in mass-balance, we think the glacier maximum may be due to a 20 to 30% increase in precipitation and a 1.1 to 1.2 °C decrease in temperature compared with present conditions. In the early 18th century, glaciers started to retreat at varying rates until the late 19th to early 20th century; this trend was generally associated with decreasing accumulation rates. By contrast, glacier recession in the 20th century was mainly the consequence of an increase in temperature and humidity. These results are consistent with observations made in the study region based on other proxies.  相似文献   

5.
A Schmidt hammer was used in conjunction with lichenometry to examine the relative age of the outermost Neoglacial moraines in front of glaciers in the Jotunheimen mountains of southern Norway. Particular attention was directed at (1) the magnitude of the 'Little Ice Age' glacier expansion episode relative to any others of Neoglacial age, and (2) the potential and limitations of the Schmidt hammer in the context of Holocene glacial chronologies. Schmidt hammer R-values were measured at 34 glaciers and the sizes of the lichen Rhizocarpon geographicum agg. at 80 glaciers. Unusually low R-values and large lichens suggest the occurrence of pre- 'Little lee Age' Neoglacial moraines at only a small minority (< 10 %) of the sampled glaciers. The traditional model of relatively large southern Norwegian glaciers during the 'Little Ice Age' is substantiated and it is tentatively suggested that differences in climate or glacier type may account for a regional difference in the status of the 'Little Ice Age' between northern and southern Scandinavia. The incorporation of weathered boulders into 'Little Ice Age' moraines by glacier push mechanisms, and the altitudinally-related variation in boulder surface textures, are identified as major sources of potential error in the use of the Schmidt hammer R-values for relative-age determination of Neoglacial surfaces.  相似文献   

6.
Controlled moraines are supraglacial debris concentrations that become hummocky moraine upon de-icing and possess clear linearity due to the inheritance of the former pattern of debris-rich folia in the parent ice. Linearity is most striking wherever glacier ice cores still exist but it increasingly deteriorates with progressive melt-out. As a result, moraine linearity has a low preservation potential in deglaciated terrains but hummocky moraine tracts previously interpreted as evidence of areal stagnation may instead record receding polythermal glacier margins in which debris-rich ice was concentrated in frozen toe zones. Recent applications of modern glaciological analogues to palaeoglaciological reconstructions have implied that: (a) controlled moraine development can be ascribed to a specific process (e.g. englacial thrusting or supercooling); and (b) controlled moraine preservation potential is good enough to imply the occurrence of the specific process in former glacier snouts (e.g. ancient polythermal or supercooled snouts). These assumptions are tested using case studies of controlled moraine construction in which a wide range of debris entrainment and debris-rich ice thickening mechanisms are seen to produce the same geomorphic features. Polythermal conditions are crucial to the concentration of supraglacial debris and controlled moraines in glacier snouts via processes that are most effective at the glacier–permafrost interface. End moraines lie on a process–form continuum constrained by basal thermal regime. The morphological expression of englacial structures in controlled moraine ridges is most striking while the moraines retain ice cores, but the final deposits/landforms tend to consist of discontinuous transverse ridges with intervening hummocks, preserving only a weak impression of the former englacial structure. These are arranged in arcuate zones of hummocky moraine up to 2 km wide containing ice-walled lake plains and lying down flow of streamlined landforms produced by warm-based ice. A variety of debris entrainment mechanisms can produce the same geomorphic signature. Spatial and temporal variability in process–form relationships will lead to the sequential development of different types of end moraines during the recession of a glacier or ice sheet margin.  相似文献   

7.
Lichen distribution and growth were examined at several sites in the Canadian Rockies between Mt. Robson and Banff townsite to determine the feasibility of lichenometry on calcareous deposits. The only lichen common enough to be of use is Xanthoria elegans, a bright orange lichen with round or elliptical thalli. It is not an ideal species for lichenometry because (a) it grows fairly quickly and has a range of only a few centuries, (b) growth is influenced by the presence of animal dung, (c) parts of some thalli weather away before maximum size is attained, (d) thalli may thicken as well as grow laterally with age, (e) the species is succeeded by other species relatively quickly in heavily forested environments, and (f) the species is not abundant on some deposits due to sometimes-unexplained environmental influences. However, when used with caution the species is still useful for dating purposes.A growth curve for Xanthoria elegans was developed using moraines dated dendro-chronologically and man-made structures. After an ecesis interval of one or two decades the lichen grows at a rate of 0.68 mm/yr for several decades, then slows down to a rate of 0.22 mm/yr.  相似文献   

8.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The melt-out of material contained within englacial thrust planes has been proposed to result in the formation of stacked moraine sequences with characteristic proximal rectilinear slopes. This model has been applied to explain the formation of Scottish Younger Dryas ice-marginal ('hummocky') moraines on the basis of these morphological characteristics. However, no sedimentological data exist to support this proposal. This article reviews hitherto proposed models of 'hummocky' moraine formation and presents detailed geomorphological and sedimentological results from the NW Scottish Highlands with the aims of reconstructing the dynamics of Younger Dryas glaciers and of testing the applicability of the englacial thrusting model. Exposures demonstrate that moraines represent terrestrial ice-contact fans throughout, with a variety of postdepositional deformation structures being identified in most cases, indicating that glacier retreat was incremental and oscillatory; proximal rectilinear slopes are interpreted as ice-contact faces formed after ice support was withdrawn during retreat. This evidence strongly suggests a temperate glacier regime and short glacier response times similar to those in present-day SW Norway or Iceland. It contradicts the thrusting model and the proposal that Svalbard might form a suitable analogue for Younger Dryas moraines in Scotland.  相似文献   

10.
Recession of the snout of Dakshin Gangotri glacier in the western part of Schirmacher Oasis, East Antarctica has been recorded over two decades. However, the rate of retreat is not uniform and varies at different locations. The ice wall forming the western flank of the glacier has shown an average retreat of 17.07 m between 2001 and 2009 while the snout had gone back by 6.94 m (average) during the same period. Before 2001, the snout had shown a complete recession of 3.13 m (average). The snout occupies valley area receiving less amount of solar radiation as compared to the western wall, which is a vertical cliff receiving maximum amount of solar radiation. The notable difference in the rate of recession in different parts of the Dakshin Gangotri glacier overriding Schirmacher Oasis can be attributed to combined effect of natural factors, including meteorological parameters, ice sheet dynamics and geomorphology of that area.  相似文献   

11.
The immediate proglacial areas of most of the Oraefajökull outlet glaciers in southeast Iceland are characterized by well-developed river terraces, formed by the recent downcutting of the major meltwater streams. This paper examines the rates and causes of dissection in two contrasting cases, using lichenometric dating to establish the ages of individual terraces. An age–size curve for the aggregated Rhizocarpon sub-genus is developed from lichen measurements on dated recessional moraines, and is compared with similar curves obtained by previous workers. Levelling profiles of the terraces are then used in conjunction with the lichenometric dates to determine mean rates of net erosion between each dated surface, and to study the associated variations in channel slope. The results obtained for the Svinafellsá show that the timing and rates of downcutting have been closely related to frontal movements of the Svinafellsjökull glacier. The Kotá terraces, however, may have been formed independently of glacier fluctuations, and are thought to represent stages in the gradual recovery of the stream from the aggradational effects of the 1727 jökulhlaup.  相似文献   

12.
Large and complete glaciotectonic sequences formed by marine‐terminating glaciers are rarely observed on land, hampering our understanding of the behaviour of such glaciers and the processes operating at their margins. During the Late Weichselian in western Iceland, an actively retreating marine‐terminating glacier resulted in the large‐scale deformation of a sequence of glaciomarine sediments. Due to isostatic rebound since the deglaciation, these formations are now exposed in the coastal cliffs of Belgsholt and Melabakkar‐Ásbakkar in the Melasveit district, and provide a detailed record of past glacier dynamics and the inter‐relationships between glaciotectonic and sedimentary processes at the margin of this marine‐terminating glacier. A comprehensive study of the sedimentology and glaciotectonic architecture of the coastal cliffs reveals a series of subaquatic moraines formed by a glacier advancing from Borgarfjörður to the north of the study area. Analyses of the style of deformation within each of the moraines demonstrate that they were primarily built up by ice‐marginal/proglacial thrusting and folding of marine sediments, as well as deposition and subsequent deformation of ice‐marginal subaquatic fans. The largest of the moraines exposed in the Melabakkar‐Ásbakkar section is over 1.5 km wide and 30 m high and indicates the maximum extent of the Borgarfjörður glacier. Generally, the other moraines in the series become progressively younger towards the north, each designating an advance or stillstand position as the glacier oscillated during its overall northward retreat. During this active retreat, glaciomarine sediments rapidly accumulated in front of the glacier providing material for new moraines. As the glacier finally receded from the area, the depressions between the moraines were infilled by continued glaciomarine sedimentation. This study highlights the dynamics of marine‐terminating glaciers and may have implications for the interpretation of their sedimentological and geomorphological records.  相似文献   

13.
Solute dynamics of meltwater of Gangotri glacier,Garhwal Himalaya,India   总被引:2,自引:0,他引:2  
The present study investigates solute dynamics of meltwater of Gangotri glacier system in terms of association of different chemical compounds with the geology of the area. In the meltwater, the presence of cations varied as c(Mg2+) > c(Ca2+) > c(Na+) > c(K+), while order of concentration of anions has been c(HCO3 ) > c(SO4 2−) > c(Cl) > c(NO3 ) in years 2003 and 2004. The magnesium and calcium are found as the dominant cations along with bicarbonate and sulphate as dominant anions. The high ratios of c(Ca2+ + Mg2+)/total cations and c(Ca2+ + Mg2+)/c(Na+ + K+) indicate that the meltwater chemistry of the Gangotri glacier system catchment is mostly controlled by carbonate weathering. Attempts are made to develop rating curves for discharge and different cations. Sporadic rise in discharge without corresponding rise in concentration of most of cations is responsible for their loose correlation in a compound valley glacier like Gangotri glacier.  相似文献   

14.
Fluctuations of the Charquini glaciers (Cordillera Real, Bolivia) have been reconstructed for the Little Ice Age (LIA) from a set of 10 moraines extending below the present glacier termini. A lichenometric method using the Rhizocarpon geographicum was used to date the moraines and reconstruct the main glacier fluctuations over the period. The maximum glacier extent occurred in the second half of the 17th century, followed by nearly continuous retreat with three interruptions during the 18th and the 19th centuries, marked by stabilisation or minor advances. Results obtained in the Charquini area are first compared with other dating performed in the Peruvian Cordillera Blanca and then with the fluctuations of documented glaciers in the Northern Hemisphere. Glacier fluctuations along the tropical Andes (Bolivia and Peru) were in phase during the LIA and the solar forcing appears to be important during the period of glacier advance. Compared with the Northern Hemisphere mid-latitudes, the major advance observed on these glaciers during the first half of the 19th century is not present in the tropical Andes. This discrepancy may be due to regional scale climate variations. To cite this article: A. Rabatel et al., C. R. Geoscience 337 (2005).  相似文献   

15.
波堆藏布谷地冰碛丘陵形成机制及其环境意义   总被引:6,自引:4,他引:2  
波堆藏布谷地中分布着大面积的冰碛丘陵, 通过考察发现其个体大小、外形、分布规模及内部砾石组成等方面都与高纬大冰盖外围形成的冰碛丘陵有很大的区别. 以冰川沉积学理论为基础, 从沉积动力学的角度讨论中低纬度波堆藏布谷地中冰碛丘陵的形成机制. 结果表明: 气候变化造成冰川的大面积死冰加之宽阔的河谷、海洋性冰川的特性促使波堆藏布谷中形成如此大面积的冰碛丘陵; 同时,大规模的冰碛丘陵表明气候转暖(抑或变干)的过程是突变的.  相似文献   

16.

冰碛物是全球的一个主要粉尘源,联系着全球气候、大气气溶胶、海洋元素和生产力的变化。过去对粉尘,特别是沙漠、黄土的研究主要集中在中纬度地区,但对来自高纬度的冰川粉尘研究较少。为了解现代高纬度冰缘环境下冰川作用、搬运作用和化学风化对冰碛物的物理化学性质的影响,本文以北极新奥尔松Austre Lovénbreen冰川(简称A冰川,下同)深度小于5cm的冰碛物(包括小冰期冰碛物和冰沼土)≤2mm组分为对象,测定了小冰期(Little Ice Age,简称LIA)冰碛物和冰沼土的粒径、磁化率以及元素组成。研究表明:1)A冰川冰碛物粒径组成以砂级为主(>63μm)、粉砂级次之(2~63μm)、粘粒最少( < 2μm)。A冰川冰碛物大部分呈双峰或多峰特征,LIA冰碛物典型双峰峰值为10~30μm和100~200μm;冰沼土为30~60μm和300~450μm。近岸LIA冰碛物和冰沼土相对冰川末端LIA冰碛物具有较粗的平均粒径及较高的正偏度,表明其在沉积之后受搬运作用影响损失了细组分。2)A冰川冰碛物磁化率介于5.5×10-8~11.4×10-8m3/kg之间,平均值为7.7×10-8m3/kg。LIA冰碛物磁化率与总铁含量呈正相关,主要受母岩和搬运作用制约,未受成壤作用影响。3)A冰川冰沼土与LIA冰碛物相比,富Si,但贫Al、Fe、K、Ca、Mg等元素;LIA冰碛物平均化学组成与洛川黄土和上部大陆地壳(Upper Continental Crust,简称UCC)非常接近。A冰川冰碛物CIA平均值为58.57,反映冰缘环境较弱的化学风化条件。A冰川冰碛物CIA值集中分布在UCC至黄土的平均化学组成风化趋势线上,证明了黄土粉尘起源于由一系列的冰川和高山作用产生的沉积物的可能性。分析结果表明,在弱风化的冰缘环境下,CIA值能从整体上反映LIA冰碛物和冰沼土的化学风化差异,但对沉积年龄小的LIA冰碛物而言,搬运作用引起的粒度组成差异和相应的不同矿物类型和含量的改变或是CIA值变化的主要原因。

  相似文献   

17.
The cryosphere constitutes an important subset of the hydrosphere.The Himalayan cryosphere is a significant contributor to the hydrological budget of a large river system such as the Ganges.Basic data on the cryosphere in the Himalaya is inadequate and also has large uncertainties.The data on glacial melt component in the Himalayan rivers of India also shows high variability.The Gangotri glacier which constitutes nearly a fifth of the glacierized area of the Bhagirathi basin represents one of the fastest receding,large valley glaciers in the region which has been surveyed and monitored for over sixty years.The availability of measurement over a long period and relatively small glacier-fed basin for the Bhagirathi river provides suitable constraints for the measurement of the glacial melt fraction in a Himalayan river.Pre- and post-monsoon samples reveal a decreasing trend Of depletion of δ~(18)O in the river water from glacier snout(Gaumukh) to the confluence of the Bhagirathi river with the Alaknanda river near Devprayag.Calculations of existing glacial melt fraction(~ 30%at Rishikesh) are not consistent with the reported glacial thinning rates.It is contended that the choice of unsuitable end-members in the three component mixing model causes the overestimation of glacial melt component in the river discharge.Careful selection of end members provides results(~11%at Devprayag) that are consistent with the expected thinning rates.  相似文献   

18.
Mature dead-ice has been overridden repeatedly by the Brúarjökull glacier, and multiple generations of ice-cored landforms occur, with ice cores originating at least from glacier surges in 1963-1964, 1890 and 1810. Ice-cores are located on the proximal slopes of end moraines and in the valleys, as ice-cored outwash and eskers, ice-cored drumlins and ice-cored moraine patches. This dictates that the sediments and internal architecture might not always match their end-products as de-icing progresses. Analysis of multi-temporal aerial photographs integrated with annual field measurements showed that the time required for a total de-icing in the forefield exceeds the duration of the quiescent phases between the surges, even in the current climate at the limit of permafrost. Quantifying melting progression suggests that complete de-icing of ice-cored landforms is not likely to occur. The mean de-icing rate is c. 9.8 cm/yr in 1890 ice-cored moraines, and c. 17.7 cm/yr in 1963-1964 ice-cored moraines. Backwasting of ice-cored slopes (c. 30 cm/yr) is the fastest melt process. Long-term downwasting rates derived from multi-temporal digital elevation models provide a superior insight into the impact of multiple glacier surges on the formation of dead-ice moraines in front of Brúarjökull.  相似文献   

19.
A difference in the size of Neoglacial lateral moraines on either side of a valley axis (within-valley asymmetry of lateral moraine development) is described. Analysis of clast roundness has revealed subangular material in latero-terminal and terminal moraines; lateral moraines, however, exhibit a compositional gradient of increasing angularity with distance from the former glacier snout. Comparisons with clasts of known origin suggest that this 'roundness gradient' may be explained with reference to either or both of two hypotheses: (1) a variable proportion of supraglacial (or englacial) to subglacial transported material; and (2) the variable composition of regolith incorporated by a push mechanism from the valley sides. Within-valley asymmetry is inferred to result where the supply of debris to lateral moraines from these sources is unequal either side of a valley axis. Both interpretations are also consistent with the relatively large size of latero-terminal sections of end moraines. In order to account for the discrepancy between moraine size and apparent debris supply rates, it is suggested that the largest lateral moraines may have been formed over a longer time scale than the 'Little Ice Age', and that reworking of deposits may have occurred. The supply of debris to the north-facing lateral moraine at Nordre Illåbreen has been so great that it has developed into a rock glacier; this suggests the possibility that subglacial material and valley-side regolith, as well as supraglacial material, contributes to the formation of ice-cored rock glaciers.  相似文献   

20.
冰川物质平衡线的估算方法   总被引:9,自引:8,他引:1  
崔航  王杰 《冰川冻土》2013,35(2):345-354
冰川物质平衡线高度(ELA)与气候变化, 特别是与气温和降水的变化关系密切, 是重建古气候和反映冰川积累和消融变化的重要代用指标.直接观测方法可以获得较为精准的ELA, 但不能大范围展开.因此, ELA的间接估算方法, 如赫斯法(Hess)、 积累区面积比率法(AAR)、 面积–高程平衡率法(AABR)、 末端至冰斗后壁比率法(THAR)、 终碛到最高峰高差比率法(TSAM)、 侧碛最大高度法(MELM)、 冰斗底部高程法(CF)、 冰川作用阈值法(GT)等, 得到了广泛的发展与应用.然而, 由于受到雪崩或风吹雪补给、 表碛覆盖、 冰川类型和形态等因素的影响, 单一使用某种方法易受到算法本身的限制, 误差较大, 需综合考虑各种算法的适用性和选取参数的差异, 以提高计算的精度, 同时也要考虑到后期构造抬升等的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号