首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用1951—2013年江淮地区30个代表站点逐日降水观测资料和NCEP/NCAR全球地表感热通量和环流场逐月再分析资料,探讨江淮梅雨异常与梅雨期及其前后东亚地区地表感热通量的相关关系及其物理机制。结果表明:梅雨前期,青藏高原、内蒙古高原和印度半岛的地表感热通量与江淮梅雨量存在正相关,当春季青藏高原、内蒙古高原、印度半岛地表感热通量异常偏高时,江淮梅雨偏多;梅雨期,梅雨量与地表感热通量显著负相关区在东海海面,同时青藏高原和河套平原地表感热通量在丰梅年显著偏大,说明海陆热力差异对江淮梅雨有共同调制作用;梅雨后期,河套平原、华北地区地表感热通量在丰梅年显著偏大,表明地表热力特征随大气环流的调整而发生演变。  相似文献   

2.
东北冷涡过程对江淮梅雨期降水的影响机制   总被引:5,自引:1,他引:5  
利用1954--2003年中国740站逐日降水资料以及NCEP/NCAR再分析资料,对东北冷涡影响江淮梅雨的机制进行了研究。结果发现,东北冷涡出现以后,随着它的东移南压与西伸的副热带高压之间相互作用,使我国江淮地区南侧对流层中上层的气压梯度力加强,气压梯度力做功使得动能增大,随后动能向下输送,导致江淮以南地区的西南低空急流形成;低空急流引导的北上暖湿气流与东北冷涡引导的南下干冷空气相互作用,有利于梅雨锋的形成和维持,激发江淮地区低层对流不稳定增加,上升运动出现,从而导致江淮梅雨期降水活跃。  相似文献   

3.
2008年东亚夏季风异常及其对江淮梅雨的影响   总被引:2,自引:1,他引:2  
鲍媛媛  金荣花  赵瑞霞  蒋星 《气象》2009,35(4):34-42
利用国家气象中心站点日雨量资料、NCEP再分析资料和NOAA OLR资料对2008年梅雨前后及梅雨过程中亚洲季风活动、副高及ITCZ的变化、索马里急流和南亚季风活动特征、亚太地区对流和热源分布特征等进行诊断分析,以揭示梅雨期间季风活动特征的成因及其对江淮入梅、出梅及梅雨强度的影响.结果表明,梅雨期间,季风组成成员复杂多变,无一能占绝对优势,各成员的配置均处于一个动态变化过程中,此长彼消,导致了梅雨期间雨带不稳定,是2008年度梅雨偏少的重要原因.ITCZ影响副高的变化,且超前于副高的变化,对江淮梅雨预报有重要的指示意义.6月初ITCZ突然显著增强,是副高北跳、江淮入梅的重要原因;而中旬后期ITCZ再次北抬并伴随台风登陆,直接导致了江淮出梅.6月初,索马里急流爆发,比多年平均偏早,导致阿拉伯海西南气流北涌、印度季风提前爆发,对江淮偏早入梅有一定作用.索马里急流的维持和消长对江淮梅雨的位置和强度也有一定影响.印度季风爆发及其后的变化影响印缅季风槽的北抬和其后的位置变化,并通过改变青藏高原南部和孟加拉湾热源的强度和分布,影响西南季风的东传和梅雨雨带.  相似文献   

4.
入梅时间早晚直接影响梅雨期雨量的多寡,其准确预测对农业、交通和旅游业等气象服务具有重要意义。利用中国气象局2017年发布的《梅雨监测业务规定》中的入梅日期资料和NCEP/NCAR再分析资料,研究1981—2020年江淮梅雨入梅早晚的气候特征,分析亚洲夏季风对入梅日早晚的影响。结果表明:(1)江淮梅雨入梅日具有显著的年际变化特征,平均入梅日为6月21日,标准差为11 d,最早和最晚入梅日相差39 d。(2)入梅日与南亚夏季风SASM (South Asian Summer Monsoon)呈显著负相关,与东亚夏季风EASM (East Asian Summer Monsoon)呈正相关。强SASM年,南亚高压偏东,中高纬度高空急流偏南,江淮地区为水汽辐合区,有利于江淮区入梅偏早;强EASM年,西太副高偏北偏强,南风气流旺盛,水汽在华南和东北地区辐合,在江淮地区辐散,不利于梅雨的发生。(3)由于亚洲夏季风具有协同爆发的特点,强SASM-弱EASM协同年,平均入梅日较常年平均偏早4 d,与之相反的协同年入梅日偏晚11.6 d。强SASM-弱EASM年,江淮地区位于高空急流出口右侧,伊朗高压位...  相似文献   

5.
本文是系列文章的第二篇,首先分析了1989年亚洲夏季风爆发时期青藏高原及邻近地区地表感热通量和大气温度场季节变化的基本特征,着重讨论了春季高原地表感热加热和亚洲季风爆发的联系,然后分析了1980~1989年10a南海季风爆发的气候学特征。上述工作表明,在春末初夏过渡季节,高原上空大气温度变化出现阶段性的跃升,并同亚洲夏季风阶段性的爆发有很好的对应关系。高原地表感热通量的持续增大导致了对流层高层局地反气旋式扰动环流的出现,使南亚反气旋北进的过程明显受到高原局地热力环流的调制,而热带东风急流入口区所产生的强烈的高层辐散,提供了有利于热带季风对流在南海地区首先爆发的动力学条件。此外,从5月份至6月中下旬,青藏高原、伊朗—阿富汗上空强大暖中心相继建立的结果,直接导致了热带地区上空大气南北温度梯度的反向依次在南海—孟加拉湾东部和阿拉伯海—印度次大陆由东向西相继建立,从而决定了亚洲季风建立的过程在不同地区爆发的时间不同。  相似文献   

6.
亚洲季风区地面感热通量的区域变化特征   总被引:1,自引:0,他引:1  
采用1979-1995年(缺1986、1987、1993)NCEP/NCAR再分析资料中的逐旬感热通量资料,对亚洲季风区地面感热通量的空间结构及时间演变进行了旋转经验正交函数(REOF)分析。结果表明:印度半岛和中南半岛地区感势通量的变化与亚洲季风的爆发及演变有密切关系,是季风爆发的主要关键区。这两个地区的感热积累是东亚季风爆发的触发因素之一,尤其是印度半岛北部感热通量的突变对印度夏季风演变十分重要。印度半岛北部与青藏高原西部的热力差异在季风的爆发和维持中占有重要地位。而东北亚与西北太平洋的热力差异只对东亚夏季风的演变有影响,与冬季风则无直接关联。在东亚季风的爆发中居主导地位的还是印度半岛北部和青藏高原西北部的感热加热作用。  相似文献   

7.
杜钦  高阳华  黄静  高松 《暴雨灾害》2021,24(2):208-215

基于通量观测、邻近自动气象观测站和ERA5-Land再分析数据,结合重庆西部暴雨个例,讨论了重庆山地通量观测资料的可靠性和适用性,并对通量观测在2019年度的不同时间尺度变化特征进行分析,结果如下:(1)通量站与邻近气象站有相似的气象背景,通量观测相对于ERA5-land再分析资料更能反映出地表感热和潜热通量在降水期间的时间演变情况,该数据是可靠的,通量站的降水量可以用邻近站点平均降水量代替。(2)三种通量及其增量与温度、相对湿度、风速和降水均呈现出不同的相关关系,其中动量通量与降水和风速为正相关;感热和潜热通量与温度、风速为正相关,与相对湿度为负相关;槽上站的潜热和感热通量的增量与局部降水为负相关,这些特征均表明通量观测可以用于该次暴雨研究中。(3)感热、潜热通量的季节和月变化特征表明在长时间尺度上,地面对大气主要表现为加热和蒸发作用,动量通量的季节变化特征表明春季湍流运动最强而秋季最弱;潜热和感热通量的日变化主要表现为单峰型,即白天以增温和蒸发为主,夜间以冷却和凝结为主;动量通量的日变化也以单峰型为主,即白天湍流活动较强,夜间相对较弱,只有金佛山站在春夏秋三季表现出双峰型,即在夜间也有会出现湍流活动增强的情况。

  相似文献   

8.
讨论了我国地表感热的气候计算问题,提出以鲍文比法为基础的感热气候计算式,并据此计算出全国215站月、年平均感热通量密度,进而分析了其在全国的时空分布特点。  相似文献   

9.
利用青藏高原(以下简称高原)气象台站常规观测资料、国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016)、国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据和卫星辐射资料,定量评估了12个全球气候模式对1979~2014年高原中东部地表感热通量的模拟能力,并对其模拟偏差进行了成因分析。结果表明,CMIP6模式可较好地重现高原地表感热通量的年循环和季节平均的空间分布型,但数值较计算感热通量偏低,主要表现为对感热通量大值区严重低估。区域平均而言,12个模式模拟的春季高原中东部感热通量的时间演变序列整体较计算感热通量偏低,其中偏差最大的模式为MIROC6,其多年均值仅为计算值的1/3左右。进一步分析发现多模式模拟的春季高原10 m高度处风速和地气温差分别偏强和偏弱,说明CMIP6模拟的春季高原感热通量偏低可主要归因于地气温差的模拟冷偏差。地气温差的模拟冷偏差在高原中东部地区普遍存在,且地表温度和空气温度均存在明显冷偏差,尤其地表温度偏差更大,这很大程度上可能与CMIP6多模式模拟的春季高原降水偏强有关。  相似文献   

10.
基于多种资料的青藏高原地表感热的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
青藏高原地表感热通量是高原热源的主要分量之一,对高原局地天气系统、我国天气气候以及亚洲季风等都有着重要影响。选取1980~2016年青藏高原的站点资料和ERA-Interim、NCEP1、NCEP2再分析资料,计算高原地表感热通量的分布状况和时间变化特征并对不同资料得到的结果进行比较分析,结果表明:4种资料在夏季的空间分布、年际变化,高原中部的年际变化,以及长期变化趋势上具有较好的一致性,其中ERA-Interim感热资料较优于其他两种再分析资料。青藏高原的地表感热通量分布呈西高东低的特征,年均最大值出现在柴达木盆地,最小值位于贡山;区域平均值春季最大,冬季最小。感热逐月变化呈单峰型分布,不同分区的年际变化均在2001年或2003年由减弱趋势转变为增强趋势。   相似文献   

11.
利用1960~2010年ERA-20C再分析资料和中国东部站点降水观测资料,探讨了我国东部春季极端降水与欧亚大陆地表感热通量的联系和可能影响途径。结果发现,当春季欧亚大陆中纬度巴尔喀什湖以西及贝加尔湖以南区域地表感热通量偏弱(强),我国东部沿海地区地表感热通量偏强(弱)时,我国东部春季极端降水呈现南少(多)北多(少)的反相分布特征。当春季欧亚大陆中纬度关键区地表感热偏弱,低纬度关键区地表感热通量偏强时,春季副热带西风急流偏弱、位置偏北,我国东部北方地区大气斜压不稳定和对流不稳定偏强,北方地区极端降水偏强,而南方地区大气斜压不稳定和对流不稳定偏弱,南方地区极端降水偏弱。当春季欧亚大陆中纬度关键区地表感热偏强,低纬度关键区地表感热通量偏弱,我国东部极端降水的情况大致相反。  相似文献   

12.
Variation in the location of the South Asian High(SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau(TP) and the Iranian Plateau(IP). Based on observational and ERA-Interim data,diagnostic analyses reveal that the interannual northwestward–southeastward(NW–SE) shift of the SAH in June is more closely correlated with the synergistic effect of concurrent surface thermal anomalies over the TP and IP than with each single surface thermal anomaly over either plateau from the preceding May. Concurrent surface thermal anomalies over these two plateaus in May are characterized by a negative correlation between sensible heat flux over most parts of the TP(TPSH)and IP(IPSH). This anomaly pattern can persist till June and influences the NW–SE shift of the SAH in June through the release of latent heat(LH) over northeastern India. When the IPSH is stronger(weaker) and the TPSH is weaker(stronger)than normal in May, an anomalous cyclone(anticyclone) appears over northern India at 850 hPa, which is accompanied by the ascent(descent) of air and anomalous convergence(divergence) of moisture flux in May and June. Therefore, the LH release over northeastern India is strengthened(weakened) and the vertical gradient of apparent heat source is decreased(increased)in the upper troposphere, which is responsible for the northwestward(southeastward) shift of the SAH in June.  相似文献   

13.
Variability of Surface Sensible Heat Flux over Northwest China   总被引:2,自引:0,他引:2       下载免费PDF全文
The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.  相似文献   

14.
卫星遥感结合气象资料计算的青藏高原地面感热特征分析   总被引:1,自引:0,他引:1  
戴逸飞  王慧  李栋梁 《大气科学》2016,40(5):1009-1021
本文选取1981年7月至2012年12月美国国家航空和航天局(NASA)制作的归一化的动态植被指数(NDVI)资料、根据NDVI值计算地表热力输送系数(CH)的参数化关系式(CH-INDV)和青藏高原70个常规气象观测资料,计算了青藏高原全区的逐月地表热力输送系数(CH),讨论了其时空分布特征,并在此基础上计算了高原70个常规台站的感热通量(SSHF)序列,并与已有感热资料进行了对比。随后,探讨了地面感热通量的气候特征及其年际变化与气候因子的关系。结果表明:高原地区的CH值具有明显的空间差异和季节差异,表现为东高西低、夏季大、冬季小的特点。感热的年际变化在冬季主要响应于地气温差的变化,夏季则受地面风速影响较大;由于风速减小趋缓,地气温差增大,变化趋势在2003年前后由减弱趋势转变为增强趋势,这种趋势的转变最早发生在2001年秋季,且在高原全区具有较好的一致性。  相似文献   

15.
江淮梅雨季亚洲阻塞高压活动统计特征   总被引:1,自引:1,他引:1  
利用1960—2018年6—7月NCEP/NCAR逐日再分析资料和同期中国国家气象站日降水量资料,对江淮梅雨季亚洲地区阻塞高压活动地理分布、关键区阻塞高压事件活动频次、生命周期以及年际和年代际变化,及其与江淮梅雨异常的关系进行了系统分析。结果表明:(1)近59年江淮梅雨季(6—7月),亚洲阻塞高压事件共计363次,其中心主要分布在乌拉尔山区域(40°—80°E)、贝加尔湖区域(80°—120°E)和鄂霍次克海区域(120°—160°E)3个关键区。(2)3个关键区阻塞高压事件的次数和累计日数由高到低依次为:鄂霍次克海、乌拉尔山和贝加尔湖区域。双阻塞形势以乌拉尔山-鄂霍次克海双阻居多,约占亚洲地区双阻日数的60%。阻塞事件的平均生命周期7 d左右,最长维持时间为13 d。(3)3个关键区总的及分区的阻塞次数和日数都有明显的年际变化并呈增加的趋势,其中线性增加趋势最为明显的是鄂霍次克海区域,与近59年江淮梅雨季的累计雨量增加趋势一致。(4)江淮梅雨季降雨量多寡与阻塞高压活动密切相关,梅雨正(负)异常年鄂霍次克海区域、乌拉尔山-鄂霍次克海双阻日数和次数显著偏多(偏少),而乌拉尔山和贝加尔湖区域的阻塞高压事件与梅雨关系并不显著。(5)江淮梅雨季鄂霍次克海阻塞高压的日数多寡可能与前期海表温度异常信号ENSO有关。   相似文献   

16.
唐玉  李栋梁 《气象科学》2020,40(2):169-179
根据中国气象局《梅雨监测业务规定》中的入、出梅标准,结合1960—2016年全国661个常规气象站逐日气象资料,以及NCEP/NCAR月平均再分析资料,分析了江淮梅雨和东亚副热带夏季风进程变异的时空特征,提取季风关键区(32°~34°N,112°~120°E,包含17个站点),并分析了江淮梅雨和季风关键区的联系与成因。结果表明:1960—2016年平均梅雨期为6月8日—7月15日,平均梅雨量为303 mm。比东亚平均梅雨季的开始时间早9 d,比其结束时间晚7 d。梅雨量在近57 a中也呈波动式变化,但整体为上升趋势。入梅越早,出梅越晚,则梅雨期越长,梅雨量越多。副热带夏季风推进到关键区的平均时间为5月19日,其在1970s末和1990s末分别发生了由偏晚向偏早和由偏早向偏晚的突变。夏季风到达关键区偏早时,出梅日偏晚,梅雨量偏多,季风到达偏晚时,出梅日偏早,梅雨量偏少。副热带夏季风推进时间和江淮梅雨量呈全区一致的负相关,负相关区位于湖南、湖北及江西三省临近的两湖地区。东亚副热带夏季风到达关键区时间偏早(晚)年,500 hPa高度场上乌拉尔山—鄂霍茨克海为正(负)距平,阻塞高压增强(减弱);日本海附近为负(正)距平,东亚大槽加深(西退北缩),加强(削弱)了槽后冷空气向南输送且不(有)利于中低纬度副热带高压的北跳,西太平洋副热带高压中心强度增强(减弱),位置偏西(东),其西北侧的西南暖湿气流输送加强(减弱),江淮地区有水汽的辐合(辐散),有(不)利于梅雨量偏多。  相似文献   

17.
青藏高原地面感热及其异常的诊断分析   总被引:22,自引:2,他引:22  
利用青藏高原主体60个地面气象观测站1961~2000年历年各月本站气压、地面气温、风速、地表温度等资料,计算了高原地面拖曳系数CD和地面感热通量.通过主成分分析、主值函数和功率谱分析等方法,对各季代表月CD系数和地面感热通量的基本气候特征,以及地面感热通量异常变化的空间结构和时间演变趋势作了较系统的诊断研究.结果表明:利用40年资料计算的拖曳系数与地面感热通量可以较好的反应青藏高原下垫面感热的基本气候特征,即高原CD系数东南部大,西北部小;冬季大,夏季小.多年平均高原地面感热通量仅在冬季小范围出现弱的负值,其余季节感热均为正值.感热通量大的地方其年际变化也大,其年际异常的主要空间型,第一是南北差异,第二东西差异,第三为高原主体及东部地区与外围的差异.其在年际变化中存在明显的10年际以上变化趋势,具体表现在1961~2000年期间,冬季高原北部和西部地区地面感热有减弱趋势,而高原中部和东南部呈明显的上升趋势.夏季高原主体及东部地区感热通量不断加强,而高原西部地区则相反.春、夏、秋三季均以13年以上的长周期振荡为主,冬季第一主分量表现为准3年的短周期变化.    相似文献   

18.
储凌  张乐坚  陈渭民 《气象科技》2012,40(3):474-480
感热通量计算方法的研究是边界层研究中最重要的内容之一。基于中日JICA计划项目中青藏高原东缘四川盆地温江站的边界层铁塔观测资料初步研究了使用人工神经网络(ANN)计算边界层感热通量的方法,并将ANN和经验公式法计算得到的感热通量分别和真值作相关和误差分析。对2009年4月和5月的两个个例研究的结果表明:ANN计算结果和真值的相关性都高于经验公式法且趋势变化和真值更加吻合,ANN计算的2009年4月的感热通量与真值的均方根误差(RMSE)稍大于经验公式法,但2009年5月的RMSE明显小于经验公式法。  相似文献   

19.
王慧  李栋梁 《高原气象》2012,31(2):312-321
选取1981年7月-2006年12月美国国家海洋和大气局(NOAA)系列卫星观测的归一化植被指数(NDVI)资料和Ch-INDV参数化关系式,计算了我国西北干旱区84个测站历年各月的地表热力输送系数Ch值和地面感热通量序列,得到如下主要结论:(1)西北干旱区地面感热通量实际计算值与ERA-40再分析感热资料相比,两者在数值大小、分布形势和年际变化趋势上均较一致,感热实际计算值的空间分布更明显地突出了各气象站所在区域的局地特征。(2)西北干旱区地面感热输送呈单峰型年变化特征,春、夏季非常强,秋、冬季较弱;大部分区域全年均为正值,地表为感热源。(3)以97.5°E为界,西北干旱区东、西部具有不同的年际变化趋势,东部的地面感热四季均有逐年增加的趋势,而西部秋、冬季逐年略有增加,春、夏季逐年减弱明显,气候倾向率分别为-1.15 W.m-2.(10a)-1和-2.08W.m-2.(10a)-1。(4)西北干旱区地面感热输送具有明显的年代际变化特征,1980年代总体偏强,1990年代总体偏弱,2000年以来,西北地区中部的感热输送偏弱,东、西部除个别测站外均偏强。(5)西北干旱区的感热变化并不只由地气温差的变化来决定,它与地面风速和地表状况的变化也有较强的依赖关系。在冬季,主要响应地气温差的变化,春季地面风速和地气温差的影响作用同等重要,夏季以地面风速的影响为主,地气温差的影响次之,秋季与夏季相反。另外,夏季地表状况对感热的影响作用也不容忽视。  相似文献   

20.
Extreme heat over the North China Plain is typically induced by anomalous descending flows associated with anticyclonic circulation anomalies. However, an extreme heat event that happened in the North China Plain region on 12–13 July 2015,with maximum temperature higher than 40℃ at some stations, was characterized by only a weak simultaneous appearance of an anomalous anticyclone and descending flow, suggesting that some other factor(s) may have induced this heat event. In this study, we used the forecast data produced by the Beijing Rapid Updated Cycling operational forecast system, which predicted the heat event well, to investigate the formation mechanism of this extreme heat event. We calculated the cumulative heat in the mixed-layer air column of North China to represent the change in surface air temperature. The cumulative heat was composed of sensible heat flux from the ground surface and the horizontal heat flux convergence. The results indicated that the horizontal heat flux in the mixed layer played a crucial role in the temporal and spatial distribution of high temperatures.The horizontal heat flux was found to be induced by distinct distributions of air temperatures and horizontal winds at low levels during the two days, implying a complexity of the low-level atmosphere in causing the extreme heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号