首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Climate output from the UK Hadley Centre's HadCM2 and HadCM3 experiments for the period 1860 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of N deposition and increasing CO2, were input (offline) to the dynamic vegetation model, Hybrid v4.1 (Friend et al., 1997; Friend and White, 1999). This model represents biogeochemical, biophysical and biogeographical processes, coupling the carbon, nitrogen and water cycles on a sub-daily timestep, simulating potential vegetation and transient changes in annual growth and competition between eight generalized plant types in response to climate.Global vegetation carbon was predicted to rise from about 600 to 800 PgC (or to 650 PgC for HadCM3) while the soil carbon pool of about 1100 PgC decreased by about 8%. By the 2080s, climate change caused a partial loss of Amazonian rainforest, C4 grasslands and temperate forest in areas of southern Europe and eastern USA, but an expansion in the boreal forest area. These changes were accompanied by a decrease in net primary productivity (NPP) of vegetation in many tropical areas, southern Europe and eastern USA (in response to warming and a decrease in rainfall), but an increase in NPP of boreal forests. Global NPP increased from 45 to 50 PgC y−1 in the 1990s to about 65 PgC y−1 in the 2080s (about 58 PgC y−1 for HadCM3). Global net ecosystem productivity (NEP) increased from about 1.3 PgC y−1 in the 1990s to about 3.6 PgC y−1 in the 2030s and then declined to zero by 2100 owing to a loss of carbon from declining forests in the tropics and at warm temperate latitudes — despite strengthening of the carbon sink at northern high latitudes. HadCM3 gave a more erratic temporal evolution of NEP than HadCM2, with a dramatic collapse in NEP in the 2050s.  相似文献   

2.
Downscaling of South America present climate driven by 4-member HadCM3 runs   总被引:5,自引:2,他引:3  
The objective of this work is to evaluate climate simulations over South America using the regional Eta Model driven by four members of an ensemble of the UK Met Office Hadley Centre HadCM3 global model. The Eta Model has been modified with the purpose of performing long-term decadal integrations and has shown to reproduce “present climate”—the period 1961–1990—reasonably well when forced by HadCM3. The global model lateral conditions with a resolution of 2.5° latitude?×?3.75° longitude were provided at a frequency of 6?h. Each member of the global model ensemble has a different climate sensitivity, and the four members were selected to span the range of uncertainty encompassed by the ensemble. The Eta Model nested in the HadCM3 global model was configured with 40-km horizontal resolution and 38 layers in the vertical. No large-scale internal nudging was applied. Results are shown for austral summer and winter at present climate defined as 1961–90. The upper and low-level circulation patterns produced by the Eta-CPTEC/HadCM3 experiment set-up show good agreement with reanalysis data and the mean precipitation and temperature with CRU observation data. The spread in the downscaled mean precipitation and temperature is small when compared against model errors. On the other hand, the benefits in using an ensemble is clear in the improved representation of the seasonal cycle by the ensemble mean over any one realization. El Ni?o and La Ni?a years were identified in the HadCM3 member runs based on the NOAA Climate Prediction Center criterion of sea surface temperature anomalies in the Ni?o 3.4 area. The frequency of the El Ni?o and La Ni?a events in the studied period is underestimated by HadCM3. The precipitation and temperature anomalies typical of these events are reproduced by most of the Eta-CPTEC/HadCM3 ensemble, although small displacements of the positions of the anomalies occur. This experiment configuration is the first step on the implementation of Eta-CPTEC/HadCM3 upcoming experiments on climate change studies that are discussed in a companion paper.  相似文献   

3.
Grain yields of wheat and maize were obtained from national statistics and simulated with an agricultural system model to investigate the effects of historical climate variability and irrigation on crop yield in the North China Plain (NCP). Both observed and simulated yields showed large temporal and spatial variability due to variations in climate and irrigation supply. Wheat yield under full irrigation (FI) was 8?t?ha?1 or higher in 80% of seasons in the north, it ranged from 7 to 10?t?ha?1 in 90% of seasons in central NCP, and less than 9?t?ha?1 in 85% of seasons in the south. Reduced irrigation resulted in increased crop yield variability. Wheat yield under supplemental irrigation, i.e., to meet only 50% of irrigation water requirement [supplemental irrigation (SI)] ranged from 2.7 to 8.8?t?ha?1 with the maximum frequency of seasons having the range of 4?C6?t?ha?1 in the north, 4?C7?t?ha?1 in central NCP, and 5?C8?t?ha?1 in the south. Wheat yield under no irrigation (NI) was lower than 1?t?ha?1 in about 50% of seasons. Considering the NCP as a whole, simulated maize yield under FI ranged from 3.9 to 11.8?t?ha?1 with similar frequency distribution in the range of 6?C11.8?t?ha?1 with the interval of 2?t?ha?1. It ranged from 0 to 11.8?t?ha?1, uniformly distributed into the range of 4?C10?t?ha?1 under SI, and NI. The results give an insight into the levels of regional crop production affected by climate and water management strategies.  相似文献   

4.
This modeling study addresses the potential impacts of climate change and changing climate variability due to increased atmospheric CO2 concentration on soybean (Glycine max (L.) Merrill) yields in theMidwestern Great Lakes Region. Nine representative farm locations and six future climate scenarios were analyzed using the crop growth model SOYGRO. Under the future climate scenarios earlierplanting dates produced soybean yield increases of up to 120% above current levels in the central and northern areas of the study region. In the southern areas, comparatively small increases (0.1 to 20%) and small decreases (–0.1 to–25%) in yield are found. The decreases in yield occurred under the Hadley Center greenhouse gas run (HadCM2-GHG), representing a greater warming, and the doubled climate variability scenario – a more extreme and variableclimate. Optimum planting dates become later in the southern regions. CO2fertilization effects (555 ppmv) are found to be significant for soybean, increasing yields around 20% under future climate scenarios.For the study region as a whole the climate changes modeled in this research would have an overall beneficial effect, with mean soybean yield increases of 40% over current levels.  相似文献   

5.
Tree-ring records are a valuable source of information for understanding long-term, regional-scale drought changes. In this study, a tree ring width chronology spanning the last 330?years (A.D. 1681–2010) is developed for the northern fringe of the Asian summer monsoon in north central China based on tree ring widths of the Chinese pine (Pinus tabulaeformis) at three sites in the Hasi Mountain (HSM). An annual (running from the previous August to the present July) Palmer Drought Severity Index (PDSI) series is reconstructed for the period A.D. 1698 to 2010 using a linear regression model. This reconstruction accounts for 49?% of the actual PDSI variance during the calibration period (A.D.1951–2005). During the last past 330?years, the year 1759 drought was the most severe and the 1926–1932 drought was the most long-lasting. These drought episodes resulted in huge economic losses and severe famine. Similar periods of drought are also found in the Great Bend of the Yellow River region, northeastern Tibetan Plateau and northern China. Our drought reconstruction is consistent with the dry-wet index derived from historical documents for the Great Bend of the Yellow River region for the last three centuries, revealing that our annual PDSI reconstruction reflects broad-scale climate anomalies and represents drought variations in the northern fringe of the Asian summer monsoon. The PDSI reconstruction correlates significantly with sea surface temperature (SST) in the eastern equatorial Pacific Ocean and northern Indian Ocean at an annual timescale, implying that El Ni?o-Southern Oscillation and the Indian monsoon might be influencing drought variability in the study area. Some extremely dry years of 1707, 1764, 1837, 1854, 1878, 1884, 1926 and 1932 coincided with major El Ni?o events in historical times. The decadal-scale variability is linked to Pacific Decadal Oscillation (PDO) and SST variations in the Atlantic Ocean. The observed recent tree growth reduction is unusual when viewed from a long-term perspective.  相似文献   

6.
Climate changes may have great impacts on the fragile agro-ecosystems of the Loess Plateau of China, which is one of the most severely eroded regions in the world. We assessed the site-specific impacts of climate change during 2010?C2039 on hydrology, soil loss and crop yields in Changwu tableland region in the Loess Plateau of China. Projections of four climate models (CCSR/NIES, CGCM2, CSIRO-Mk2 and HadCM3) under three emission scenarios (A2, B2 and GGa) were used. A simple spatiotemporal statistical method was used to downscale GCMs monthly grid outputs to station daily weather series. The WEPP (Water and Erosion Prediction Project) model was employed to simulate the responses of agro-ecosystems. Compared with the present climate, GCMs projected a ?2.6 to 17.4% change for precipitation, 0.6 to 2.6°C and 0.6 to 1.7°C rises for maximum and minimum temperature, respectively. Under conventional tillage, WEPP predicted a change of 10 to 130% for runoff, ?5 to 195% for soil loss, ?17 to 25% for wheat yield, ?2 to 39% for maize yield, ?14 to 18% for plant transpiration, ?8 to 13% for soil evaporation, and ?6 to 9% for soil water reserve at two slopes during 2010?C2039. However, compared with conventional tillage under the present climate, conservation tillage would change runoff by ?34 to 71%, and decrease soil loss by 26 to 77% during 2010?C2039, with other output variables being affected slightly. Overall, climate change would have significant impacts on agro-ecosystems, and adoption of conservation tillage has great potential to reduce the adverse effects of future climate changes on runoff and soil loss in this region.  相似文献   

7.
Building on previous work quantitative estimates of climate change impacts on global food production have been made for the UK Hadley Centre's HadCM2 greenhouse gas only ensemble experiment and the more recent HadCM3 experiment (Hulme et al., 1999). The consequences for world food prices and the number of people at risk of hunger as defined by the Food and Agriculture Organisation (FAO, 1988) have also been assessed. Climate change is expected to increase yields at high and mid-latitudes, and lead to decreases at lower latitudes. This pattern becomes more pronounced as time progresses. The food system may be expected to accommodate such regional variations at the global level, with production, prices and the risk of hunger being relatively unaffected by the additional stress of climate change. By the 2080s the additional number of people at risk of hunger due to climate change is about 80 million people (±10 million depending on which of the four HadCM2 ensemble members is selected). However, some regions (particularly the arid and sub-humid tropics) will be adversely affected. A particular example is Africa, which is expected to experience marked reductions in yield, decreases in production, and increases in the risk of hunger as a result of climate change. The continent can expect to have between 55 and 65 million extra people at risk of hunger by the 2080s under the HadCM2 climate scenario. Under the HadCM3 climate scenario the effect is even more severe, producing an estimated additional 70+ million people at risk of hunger in Africa.  相似文献   

8.
The global and regional projected changes in tropical cyclone (TC) genesis due to increased CO2 concentrations has been investigated through a large-scale TC genesis parameter (convective seasonal genesis parameter, ConvGP) in two perturbed physics ensembles. The ensembles are based on the third generation Hadley Centre atmosphere?Cocean general circulation model with the first ensemble using a coupled fully dynamic ocean (HadCM3) and the second coupled to a simplified mixed layer thermodynamic ocean (HadSM3) both consisting of 17 members. In each ensemble, parameters are identically perturbed to provide a wide range of climate sensitivity whilst retaining a credible present-day climate simulation. It is found, by comparing the ConvGP climatology from reanalysis data with the best track genesis, that it is possible to reproduce the observed genesis distribution. Future changes in the spatial ConvGP distribution are explored with respect to each tropical ocean basin. Whilst there is a similarity in the gross pattern of the ensemble-mean projected ConvGP change between HadCM3 and HadSM3, there is a non-trivial difference in the tropical Pacific Ocean, arising from different patterns of tropical Pacific sea surface temperature change. This indicates that ocean representation can be important for regional scale projections. The quantitative contribution of individual constituent parameters (i.e. vorticity parameter, shear parameter and convective potential) to the projected ConvGP change is estimated. It is found that all three large-scale parameters generally contribute constructively, but with different magnitude, in the regions where a large doubled CO2 response is found.  相似文献   

9.
The Andes Cordillera acts as regional ??Water Towers?? for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°?C39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657?years and captures interannual to decadal scales of variability in late spring?Cearly summer PDSI. These changes are related to the north?Csouth oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Ni?o-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross?CAmundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.  相似文献   

10.
By 2025, it is estimated that around 5 billion people, out of a total population of around 8 billion, will be living in countries experiencing water stress (using more than 20% of their available resources). Climate change has the potential to impose additional pressures in some regions. This paper describes an assessment of the implications of climate change for global hydrological regimes and water resources. It uses climate change scenarios developed from Hadley Centre climate simulations (HadCM2 and HadCM3), and simulates global river flows at a spatial resolution of 0.5×0.5° using a macro-scale hydrological model. Changes in national water resources are calculated, including both internally generated runoff and upstream imports, and compared with national water use estimates developed for the United Nations Comprehensive Assessment of the Freshwater Resources of the World. Although there is variation between scenarios, the results suggest that average annual runoff will increase in high latitudes, in equatorial Africa and Asia, and southeast Asia, and will decrease in mid-latitudes and most subtropical regions. The HadCM3 scenario produces changes in runoff which are often similar to those from the HadCM2 scenarios — but there are important regional differences. The rise in temperature associated with climate change leads to a general reduction in the proportion of precipitation falling as snow, and a consequent reduction in many areas in the duration of snow cover. This has implications for the timing of streamflow in such regions, with a shift from spring snow melt to winter runoff. Under the HadCM2 ensemble mean scenario, the number of people living in countries with water stress would increase by 53 million by 2025 (relative to those who would be affected in the absence of climate change). Under the HadCM3 scenario, the number of people living in countries with water stress would rise by 113 million. However, by 2050 there would be a net reduction in populations in stressed countries under HadCM2 (of around 69 million), but an increase of 56 million under HadCM3. The study also showed that different indications of the impact of climate change on water resource stresses could be obtained using different projections of future water use. The paper emphasises the large range between estimates of “impact”, and also discusses the problems associated with the scale of analysis and the definition of indices of water resource impact.  相似文献   

11.
The impacts of climate change on river flood risk at the global scale   总被引:6,自引:0,他引:6  
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5?×?0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between ?9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.  相似文献   

12.
We examine the internal climate variability of a 1000?year long integration of the third version of the Hadley Centre coupled model (HadCM3). The model requires no flux adjustment, needs no spin up procedure prior to coupling and has a stable climate in the global mean. The principal aims are (1) to validate the internal climate variability against observed climate variability, (2) to examine the model for any periodic modes of variability, (3) to use the model estimate of internal climate variability to asses the probability of occurrence of observed trends in climate variables, and (4) to compare HadCM3 with the previous version of the Hadley Centre model, HadCM2. The magnitude and frequency characteristics of the variability of the global mean surface temperature of HadCM3 on annual to decadal time scales is in good agreement with the observations. Observed upward trends in temperature over the last 20?years and longer are inconsistent with the internal variability of the model. The simulated spatial pattern of surface temperature variability is qualitatively similar to that observed, although there is an overestimation of the land temperature variability and regional errors in ocean temperature variability. The model simulates an El Niño Southern Oscillation with an irregular 3–4?year cycle, and with a teleconnection pattern which is much more like the observations than was found in HadCM2. The interdecadal variability of the model ocean in the tropical Pacific, North Pacific and North Atlantic is broadly similar to that in the real world with none of the simulated patterns having any periodic behaviour. HadCM3 simulates an Arctic Oscillation/North Atlantic Oscillation (NAO) in Northern Hemisphere winter which has a spatial pattern consistent with the observations in the Atlantic region, but has too much teleconnection with the North Pacific. The recent observed upward trend in the NAO index is inconsistent with the model internal variability. The variability of the simulated zonal mean atmospheric temperature shows some marked differences to the observed zonal mean temperature variability, although the comparison is confounded by the sparse observational network and its possible contamination by a climate change signal.  相似文献   

13.
Drought is a complex natural hazard that is poorly understood and difficult to assess. This paper describes a VIC–PDSI model approach to understanding drought in which the Variable Infiltration Capacity (VIC) Model was combined with the Palmer Drought Severity Index (PDSI). Simulated results obtained using the VIC model were used to replace the output of the more conventional two-layer bucket-type model for hydrological accounting, and a two-class-based procedure for calibrating the characteristic climate coefficient (K j ) was introduced to allow for a more reliable computation of the PDSI. The VIC–PDSI model was used in conjunction with GIS technology to create a new drought assessment index (DAI) that provides a comprehensive overview of drought duration, intensity, frequency, and spatial extent. This new index was applied to drought hazard assessment across six subregions of the whole Loess Plateau. The results show that the DAI over the whole Loess Plateau ranged between 11 and 26 (the greater value of the DAI means the more severe of the drought hazard level). The drought hazards in the upper reaches of Yellow River were more severe than that in the middle reaches. The drought prone regions over the study area were mainly concentrated in Inner Mongolian small rivers, Zuli and Qingshui Rivers basin, while the drought hazards in the drainage area between Hekouzhen–Longmen and Weihe River basin were relatively mild during 1971–2010. The most serious drought vulnerabilities were associated with the area around Lanzhou, Zhongning, and Yinchuan, where the development of water-saving irrigation is the most direct and effective way to defend against and reduce losses from drought. For the relatively humid regions, it will be necessary to establish the rainwater harvesting systems, which could help to relieve the risk of water shortage and guarantee regional food security. Due to the DAI considers the multiple characteristic of drought duration, intensity, frequency, and spatial extent, and because it is based on the VIC–PDSI model and GIS technologies, the DAI could provide some new way on directly comparing the drought hazards over different regions during a long-term period. The result of this study may be useful to decision makers when formulating drought management policies to alleviate the risk of water shortages and guarantee regional food security.  相似文献   

14.
Global warming and 21st century drying   总被引:6,自引:0,他引:6  
Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both precipitation and PET changes increase the percentage of global land area projected to experience at least moderate drying (PDSI standard deviation of ≤?1) by the end of the twenty-first century from 12 to 30 %. PET induced moderate drying is even more severe in the SPEI projections (SPEI standard deviation of ≤?1; 11 to 44 %), although this is likely less meaningful because much of the PET induced drying in the SPEI occurs in the aforementioned arid regions. Integrated accounting of both the supply and demand sides of the surface moisture balance is therefore critical for characterizing the full range of projected drought risks tied to increasing greenhouse gases and associated warming of the climate system.  相似文献   

15.
The crop model CERES-Barley was used to assess the impacts of increased concentration of atmospheric CO2 on growth and development of the most important spring cereal in Central and Western Europe, i.e., spring barley, and to examine possible adaptation strategies. Three experimental regions were selected to compare the climate change impacts in various climatic and pedological conditions. The analysis was based on multi-year crop model simulations run with daily weather series obtained by stochastic weather generator and included two yield levels: stressed yields and potential yields. Four climate change scenarios based on global climate models and representing 2 × CO2 climate were applied. Results: (i) The crop model is suitable for use in the given environment, e.g., the coefficient of determination between the simulated and experimental yields equals 0.88. (ii) The indirect effect related to changed weather conditions is mostly negative. Its magnitude ranges from ?19% to +5% for the four scenarios applied at the three regions. (iii) The magnitude of the direct effect of doubled CO2 on the stressed yields for the three test sites is 35–55% in the present climate and 25–65% in the 2 × CO2 climates. (iv) The stressed yields would increase in 2 × CO2 conditions by 13–52% when both direct and indirect effects were considered. (v) The impacts of doubled CO2 on potential yields are more uniform throughout the localities in comparison with the stressed yields. The magnitude of the indirect and direct effects ranges from ?1 to ?9% and from +31 to +33%, respectively. Superposition of both effects results in 19–30% increase of the potential yields. (vi) Application of the earlier planting date (up to 60 days) would result in 15–22% increase of the yields in 2 × CO2 conditions. (vii) Use of a cultivar with longer vegetation duration would bring 1.5% yield increase per one extra day of the vegetation season. (viii) The initial water content in the soil water profile proved to be one of the key elements determining the spring barley yield. It causes the yields to increase by 54–101 kg.ha?1 per 1% increase of the available soil water content on the sowing day.  相似文献   

16.
 The realism of the Hadley Centre’s coupled climate model (HadCM2) is evaluated in terms of its simulation of the winter North Atlantic Oscillation (NAO), a major natural mode of the Northern Hemisphere atmosphere that is currently the subject of considerable scientific interest. During 1400 y of a control integration with present-day radiative forcing levels, HadCM2 exhibits a realistic NAO associated with spatial patterns of sea level pressure, synoptic activity, temperature and precipitation anomalies that are very similar to those observed. Spatially, the main model deficiency is that the simulated NAO has a teleconnection with the North Pacific that is stronger than observed. In a temporal sense the simulation is compatible with the observations if the recent observed trend (from low values in the 1960s to high values in the early 1990s) in the winter NAO index (the pressure difference between Gibraltar and Iceland) is ignored. This recent trend is, however, outside the range of variability simulated by the control integration of HadCM2, implying that either the model is deficient or that external forcing is responsible for the variation. It is shown, by analysing two ensembles, each of four HadCM2 integrations that were forced with historic and possible future changes in greenhouse gas and sulphate aerosol concentrations, that a small part of the recent observed variation may be a result of anthropogenic forcing. If so, then the HadCM2 experiments indicate that the anthropogenic effect should reverse early next century, weakening the winter pressure gradient between Gibraltar and Iceland. Even combining this anthropogenic forcing and internal variability cannot explain all of the recent observed variations, indicating either some model deficiency or that some other external forcing is partly responsible. Received: 20 August 1998 / Accepted: 12 May 1999  相似文献   

17.
Sensitivity of a coupled climate model to canopy interception capacity   总被引:1,自引:0,他引:1  
The canopy interception capacity is a small but key part of the surface hydrology, which affects the amount of water intercepted by vegetation and therefore the partitioning of evaporation and transpiration. However, little research with climate models has been done to understand the effects of a range of possible canopy interception capacity parameter values. This is in part due to the assumption that it does not significantly affect climate. Near global evapotranspiration products now make evaluation of canopy interception capacity parameterisations possible. We use a range of canopy water interception capacity values from the literature to investigate the effect on climate within the climate model HadCM3. We find that the global mean temperature is affected by up to ?0.64 K globally and ?1.9 K regionally. These temperature impacts are predominantly due to changes in the evaporative fraction and top of atmosphere albedo. In the tropics, the variations in evapotranspiration affect precipitation, significantly enhancing rainfall. Comparing the model output to measurements, we find that the default canopy interception capacity parameterisation overestimates canopy interception loss (i.e. canopy evaporation) and underestimates transpiration. Overall, decreasing canopy interception capacity improves the evapotranspiration partitioning in HadCM3, though the measurement literature more strongly supports an increase. The high sensitivity of climate to the parameterisation of canopy interception capacity is partially due to the high number of light rain-days in the climate model that means that interception is overestimated. This work highlights the hitherto underestimated importance of canopy interception capacity in climate model hydroclimatology and the need to acknowledge the role of precipitation representation limitations in determining parameterisations.  相似文献   

18.
T. Mavromatis 《Climatic change》2012,110(1-2):249-267
The aim of the present study is, primarily, to compare the frequencies of exceptional hydrological and meteorological weekly events, employing the self-calibrated versions of Palmer’s drought indices (PDSI and PHDI, respectively), from 17 stations across Greece in the decade 1997–2006 with these of 1961–1990; on second level, to identify the trends and define the time lags between these two indices for the study period 1961–2006. The changes in the spatial distribution of exceptional weekly event frequencies between the most recent decade and the baseline period were similar for both drought indices. When 1997–2006 was compared with 1961–1990, the number of stations with a frequency of exceptionally dry weekly events >93rd percentile, increased by seven stations (41%) for PDSI and nine (53%) for PHDI, at the expense of exceptionally moist weekly spells. PDSI was found to lead PHDI by three to 20?weeks. If exceptional weekly events continue to be more frequent in the future, major implications for natural water resources are expected.  相似文献   

19.
A physiological growth and yield model was applied for assessing the effects of forest management and climate change on the carbon (C) stocks in a forest management unit located in Finland. The aim was to outline an appropriate management strategy with regard to C stock in the ecosystem (C in trees and C in soil) and C in harvested timber. Simulations covered 100 years using three climate scenarios (current climate, ECHAM4 and HadCM2), five thinning regimes (based on current forest management recommendations for Finland) and one unthinned. Simulations were undertaken with ground true stand inventory data (1451 hectares) representing Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and silver birch (Betula pendula) stands. Regardless of the climate scenario, it was found that shifting from current practices to thinning regimes that allowed higher stocking of trees resulted in an increase of up to 11% in C in the forest ecosystem. It also increased the C in the timber yield by up to 14%. Compared to current climatic conditions, the mean increase over the thinning regimes in the total C stock in the forest ecosystem due to the climate change was a maximum of 1%; but the mean increase in total C in timber yield over thinning regimes was a maximum of 12%.  相似文献   

20.
We apply an established statistical methodology called history matching to constrain the parameter space of a coupled non-flux-adjusted climate model (the third Hadley Centre Climate Model; HadCM3) by using a 10,000-member perturbed physics ensemble and observational metrics. History matching uses emulators (fast statistical representations of climate models that include a measure of uncertainty in the prediction of climate model output) to rule out regions of the parameter space of the climate model that are inconsistent with physical observations given the relevant uncertainties. Our methods rule out about half of the parameter space of the climate model even though we only use a small number of historical observations. We explore 2 dimensional projections of the remaining space and observe a region whose shape mainly depends on parameters controlling cloud processes and one ocean mixing parameter. We find that global mean surface air temperature (SAT) is the dominant constraint of those used, and that the others provide little further constraint after matching to SAT. The Atlantic meridional overturning circulation (AMOC) has a non linear relationship with SAT and is not a good proxy for the meridional heat transport in the unconstrained parameter space, but these relationships are linear in our reduced space. We find that the transient response of the AMOC to idealised CO2 forcing at 1 and 2 % per year shows a greater average reduction in strength in the constrained parameter space than in the unconstrained space. We test extended ranges of a number of parameters of HadCM3 and discover that no part of the extended ranges can by ruled out using any of our constraints. Constraining parameter space using easy to emulate observational metrics prior to analysis of more complex processes is an important and powerful tool. It can remove complex and irrelevant behaviour in unrealistic parts of parameter space, allowing the processes in question to be more easily studied or emulated, perhaps as a precursor to the application of further relevant constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号