首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examines the characteristics of the urban heat island (UHI) in a medium-sized city in northern Spain (Bilbao) using 5-year climate data (2005–2009) and the results of three specific measurement campaigns (2009–2010). Urban climate variables are not only compared with those in rural sites but also local climatic differences occurring inside the city are analysed. The findings presented in this paper show the influence of complex topography and sea/land breeze in the urban climate. Spatial characteristics and temporal evolution of UHI is presented. Hourly maximum temperature anomaly (ΔT u–r, max) occurs just after sunrise and an urban cold island (UCI) is developed after midday. Along the year, mean UHI intensity is highest in autumn and the UCI effect increases in spring and summer in relation with sea breeze cooling potential. Diurnal and seasonal variation of air flow patterns appear to influence significantly on UHI intensity.  相似文献   

2.
利用石家庄市区站和4个郊区站1962—2009年的气温资料,采用城乡气温对比和线性趋势分析方法,探讨了石家庄站地面城市热岛(UHI)强度特征及其随时间变化情况,以及城市化因素对城市站地面气温长期变化趋势影响.结果表明:石家庄站地面UHI效应明显,且UHI效应在最低气温上表现更突出;UHI强度冬季1月最大,夏季7月最小;UHI强度具有明显的日变化,最高值出现在早晨7—8时,最低值出现在午后14—16时;近48 a,石家庄站附近UHI强度呈显著增加趋势,且最低气温UHI强度比最高气温的增加趋势更明显;从UHI强度增加对地面气温观测记录的影响来看,石家庄站附近1962—2009年期间年平均UHI增温率达到0.19 ℃/(10 a),UHI增温贡献率为67.9%,即该站近48 a记录的年平均地面气温上升趋势,有2/3以上可归因于城市化因素影响.  相似文献   

3.
根据城郊站间距离等对辽宁56个气象站进行筛选,采用城郊温差法对选站和未选站时郊区站点数量有变化的大连、丹东、锦州和铁岭4个城市的月和年热岛特征进行分析。结果表明:对于年热岛特征而言,1980-2011年,大连、丹东、锦州和铁岭4个城市选站和未选站时热岛强度大小明显不同,但其变化趋势基本一致。4城市相比,选站和未选站时后均表现为铁岭年热岛强度最大,多年平均值分别为1.53 ℃和1.85 ℃,其变化范围分别为1.17-1.80 ℃和1.55-2.15 ℃,变化幅度分别为0.63 ℃和0.60 ℃。1980-2011年,铁岭热岛强度等级发生变化的年份最多,占25 %。总体来讲,选站对年热岛特征影响不是很大。对于月热岛特征而言,大连选站和未选站时热岛强度变化较大,但其他3个城市选站选站和未选站时变化不大,尤其是锦州选站和未选站时变化基本一致。4城市均有冬半年热岛效应明显,夏半年热岛效应不明显的特征。1980-2011年,各月平均热岛强度等级在选站和未选站时变化均较大,最大为丹东10月和11月,等级变化的年份占90.6 %,总体而言,选站对月热岛强度特征影响较大。  相似文献   

4.
南京细颗粒物对城市热岛强度的影响   总被引:3,自引:1,他引:3  
随着城市化和工业化进程的加快,南京城市热岛效应显著,细颗粒物污染加剧,对大气环境、气候变化和人体健康产生重要影响.本文基于观测资料,分析了南京市不同颗粒物浓度水平下城市热岛强度的变化特征;利用光学特性模型OPAC(optical properties of aerosols and clouds model)和辐射传输模型TUV(troposphere ultraviolet-visible model)估计了气溶胶的光学厚度及辐射强迫;定量分析了细颗粒物对城市热岛强度的影响及其可能机制.结果表明:南京城市热岛强度范围为-0.51.3K,冬季强于夏季.细颗粒物质量浓度范围为32 135 μg/m3,冬季高于夏季,城区和郊区差别不大;当大气中细颗粒物质量浓度较高时,城市热岛强度相对较弱;南京城郊气溶胶光学厚度变化范围为0.28 1.01,在地面产生的辐射强迫达-3.88-4.72 W·m-2;由于城区和郊区下垫面、人为热、细颗粒物浓度水平的差异,造成城郊近地面降温的不同,导致细颗粒物对城市热岛强度的削弱,夏季减弱0.1K,冬季减弱0.2K.  相似文献   

5.
Daily maximum urban heat island intensity in large cities of Korea   总被引:7,自引:0,他引:7  
Summary This study investigates the characteristics of the daily maximum urban heat island (UHI) intensity in the six largest cities of South Korea (Seoul, Incheon, Daejeon, Daegu, Gwangju, and Busan) during the period 1973–2001. The annually-averaged daily maximum UHI intensity in all cities tends to increase with time, but the rate of increase differs. It is found that the average annual daily maximum UHI intensity tends to be smaller in coastal cities (Incheon and Busan) than in inland cities (Daejeon, Daegu, and Gwangju), even if a coastal city is larger than an inland city.A spectral analysis shows a prominent diurnal cycle in the UHI intensity in all cities and a prominent annual cycle in coastal cities. A multiple linear regression analysis is undertaken in order to relate the daily maximum UHI intensity to the maximum UHI intensity on the previous day (PER), wind speed (WS), cloudiness (CL), and relative humidity (RH). In all cities, the PER variable is positively correlated with the daily maximum UHI intensity, while WS, CL, and RH variables are negatively correlated with it. The most important variable in all cities is PER, but the relative importance of the other three variables differs depending on city. The total variance explained by the multiple linear regression equation ranges from 29.9% in Daejeon to 44.7% in Seoul. A multidimensional scaling analysis performed with a correlation matrix obtained using the daily maximum UHI intensity data appears to distinguish three city groups. These groupings are closely connected with distances between cities. A multidimensional scaling analysis undertaken using the normalized regression coefficients obtained from the multiple linear regression analysis distinguishes three city groups. Notably, Incheon and Busan form one group, whose points in the two-dimensional space are very close. The results of a cluster analysis performed using the multivariate data of PER, WS, RH, and CL are consistent with those of the multidimensional scaling analysis. The analysis results in this study indicate that the characteristics of the UHI intensity in a coastal city are in several aspects different from those in an inland city.  相似文献   

6.
Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001–2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade?1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade?1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.  相似文献   

7.
Urban areas are especially vulnerable to high temperatures, which will intensify in the future due to climate change. Therefore, both good knowledge about the local urban climate as well as simple and robust methods for its projection are needed. This study has analysed the spatio-temporal variance of the mean nocturnal urban heat island (UHI) of Hamburg, with observations from 40 stations from different suppliers. The UHI showed a radial gradient with about 2 K in the centre mostly corresponding to the urban densities. Temporarily, it has a strong seasonal cycle with the highest values between April and September and an inter-annual variability of approximately 0.5 K. Further, synoptic meteorological drivers of the UHI were analysed, which generally is most pronounced under calm and cloud-free conditions. Considered were meteorological parameters such as relative humidity, wind speed, cloud cover and objective weather types. For the stations with the highest UHI intensities, up to 68.7 % of the variance could be explained by seasonal empirical models and even up to 76.6 % by monthly models.  相似文献   

8.
The statistical and dynamical characteristics of the urban heat island (UHI) intensity in Seoul are investigated for non-precipitation days and precipitation days using 4-year surface meteorological data with 1-h time intervals. Furthermore, the quantitative influence of synoptic pressure pattern on the UHI intensity is examined using a synoptic condition clustering method. The statistical analysis shows that the daily maximum UHI intensity in Seoul for non-precipitation days is strongest in autumn (4.8°C) and weakest in summer (3.5°C). The daily maximum UHI intensity is observed around midnight in all seasons except in winter when the maximum occurrence frequency is found around 08 LST. This implies that anthropogenic heating contributes to the UHI in the cold season. The occurrence frequency of the UHI intensity has a negatively skewed distribution for non-precipitation days but a positively skewed distribution for precipitation days. The amplitude of the heating/cooling rate and the difference in the heating/cooling rate between the urban and rural areas are smaller in all seasons for precipitation days than for non-precipitation days, resulting in weaker UHI intensities for precipitation days. The urban cool island occurs very often in the daytime, with an occurrence frequency being 77% of the total non-precipitation days in spring. The analysis of the impact of large-scale dynamical forcing shows that the daily maximum UHI intensity varies with synoptic pressure pattern, ranging from ?22% in spring to 28% in summer relative to the seasonal mean daily maximum UHI intensity. Comparison of the UHI intensity calculated using station-averaged temperatures to that based on the conventional two-station approach indicates that local effects on the UHI intensity are minimized by using multiple-station data. Accordingly, an estimation of the UHI intensity using station-averaged temperatures for both urban and rural areas is suggested.  相似文献   

9.
10.
A numerical investigation is conducted of the nocturnal heat island over Columbus, Ohio, a relatively flat mid-latitude city. Specifically, a cross-sectional steady-state numerical model to simulate the (thermal) structure of the nocturnal urban boundary layer is developed from a one-dimensional, time-dependent model due to Estoque. The model is applied to Columbus for special periods in September 1968 and March 1969 during which comparable experimental data were collected. The numerical simulations agree well with the observed data with respect to the detailed spatial form of the surface-based thermal boundary layer across the city. The use of the model for other metropolitan areas, for ascertaining the relative effect of city size and building geometry on the development of the thermal boundary layer, and for determining the effect of alternate land-use strategies on the thermal stratification are also discussed.Digest of portion of a dissertation submitted to the Pennsylvania State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy.Presented in part at the Air Pollution, Turbulence and Diffusion Symposium, Las Cruces, New Mexico, 7–10 December 1971.On assignment from the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce.  相似文献   

11.
近50a南京市气温和热岛效应变化特征   总被引:3,自引:5,他引:3  
杨英宝  江南 《气象科学》2009,29(1):88-91
利用南京市常规气象观测气温资料,分析1951年以来气温的变化趋势、季节特征以及年际特征,通过市区气象站和郊区六合县气象站的统计资料对比分析,了解南京市热岛效应的强度变化,以1985和2000年两期遥感影像探讨南京市热岛效应分布范围的变化特征.结果表明:1951-2000年期间南京市日最高、最低气温和日平均气温的年平均呈现上升趋势;日均气温和日最高气温夏季呈现下降趋势,春季、秋季和冬季表现为上升趋势,日最低气温所有季节都呈现上升趋势;1990s是南京市1951-2000年间增温幅度最大的时期;南京市热岛效应强度呈现增强趋势;分布范围扩大,自1985年以来热岛效应面积共增加了107.88 km2,高强度热岛中心1985年两个,到2000年已增加到3个.  相似文献   

12.
The objective of this paper is to evaluate the reliability of urban heat island intensity (UHII) as an indicator of urban heating. The diurnal patterns of air and surface-temperature based UHII and variations in urban and rural area heating were analyzed and discussed. The detailed air-temperature based UHII patterns were determined in one urban and four suburban areas of Hong Kong. UHII was determined as spatially-averaged air-temperature difference between an urban/suburban area and its surrounding rural area. Additionally, reported air and surface-temperature based UHII patterns were integrated in the discussion to carry out a comprehensive analysis. The urban and rural area heating variations (i.e., the diurnal variations in net radiation, sensible heat flux, latent heat flux, and heat stored by an area) were examined in the light of UHII patterns to validate UHII as an indicator for urban heating. It is noted that the air-temperature based UHIIs were higher and positive in the night-time but lower and negative during the daytime. On the other hand, most of the surface-temperature based UHIIs, investigated through satellite data were positive during both the daytime and night-time. It is revealed that UHII can well reflect urban heating during night-time and early morning. However, the lower and negative UHII during solar peak time (daytime when solar radiation is the dominant source of heating) has seemingly not been representing urban heating.  相似文献   

13.
苏州夏季城市热岛现状及影响因子分析研究   总被引:5,自引:4,他引:5  
利用2007年夏季常规和自动站气象观测资料,分析研究苏州城市热岛及其与影响因子关系.气温分布表明,市中心干将桥气温相对较高,而靠近太湖的新区镇湖镇、东山等郊区气温相对较低.苏州城市热岛强度日变化呈现双峰分布,两个峰值分别出现在10时和20时左右,最低值出现在16时左右.热岛强度与气象条件关系分析表明:(1)热岛强度受云量的影响较大;(2)与城区气温分布关系密切,相关系数为0.62;(3)与风向有关,城区风向为西风时的热岛强度大于东风时热岛强度;而城区热岛强度与风速关系不明显.另外相关站点的合理选取对城市热岛研究也十分重要.  相似文献   

14.
A two-dimensional primitive equation model has been used to describe the changes of the fields of horizontal wind, temperature and vertical eddy exchange coefficient and the development and evolution of urban heat island circulation for the thermal and dynamical effects of urbanlization, while the air flows over a city in the nighttime. Because the turbulence and average fluid are in a condition of unbalance to each other, the turbulent energy varies with time. So the equations are closed by introducing the equation of the variable rate of turbulent energy in the model. We are able to obtain the distribution and change of the turbulent energy over the urban area in this way. Finally we examine the effect of urbanization by using the differences of the actual ground pollutant concentration and the vertical distribution of concentration emitted by an elevated pollutant source.In order to verify this model, the profiles of horizontal velocity and temperature that are predicted by this model are compared with observed data for Changzhou city.  相似文献   

15.
西安市城市热岛效应卫星遥感分析   总被引:1,自引:0,他引:1  
基于Landsat卫星的ETM<'+>(增强型主题成像传感器)数据计算西安市亮度温度,采用监督分类法对西安市影像进行土地利用/覆盖变化分类;在此基础上对西安市城市热岛的空间分布特征及城市热岛与土地利用/覆盖变化的关系进行研究.结果表明:西安市城区地表温度明显比郊区地表温度高,由市中心向外呈现地表温度逐渐降低的趋势.城市地表温度与土地利用类型密切相关,不同地表覆盖类型的地表温度差异显著,城市用地和裸地是城市热岛强度的主要贡献因素,水体和林地具有较好的降温作用.  相似文献   

16.
17.
The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day at city scale, cumulating more than 38 mil. EUR for the three cases considered.  相似文献   

18.
Summary An analysis of the effects of the townSzeged, Hungary, on minimum temperatures between 1978 and 1980 is presented. The characteristics of the urban heat island effect were examined by revelation of the relationships between heat island intensity and macrosynoptic types, cloudiness, wind speed as well as the combination of cloud amount and wind speed. Anticyclonic weather situations, little or no cloud coverage, and calm or slight wind were favourable for a strong development of the heat island effect. In the case of extreme heat islands the domination of anticyclonic weather types was almost absolute.With 4 Figures  相似文献   

19.
城市热岛效应研究进展   总被引:14,自引:0,他引:14       下载免费PDF全文
随着城市规模的高速发展和城市人口的急剧膨胀,因城市下垫面结构的急剧变化和城市人为热排放的迅速增加所引起的城市热岛效应已逐渐成为严重影响城市人居环境和居民健康的重要因素。城市热岛效应研究已成为城市气候和区域气候研究中的热点问题。为更好地研究城市热岛效应,及时追踪国内外最新进展,综述了城市热岛的概念和形成机制,重点介绍了地面气象资料观测法、遥感监测法和边界层数值模式模拟法等3种城市热岛效应研究方法,总结了城市热岛效应国内外最新研究进展。最后基于现有城市热岛效应研究不够完善和深入,研究过于简单化和表面化,尺度局限于宏观大尺度以及各种方法自身的局限性等不足,指出在未来的城市热岛效应研究中,应突破现有的大中尺度,注意结合高分辨率卫星遥感影像进行多尺度多平台监测以及综合考虑气溶胶粒子对辐射强迫的影响等。  相似文献   

20.
The urban heat island of a city in an arid zone: the case of Eilat, Israel   总被引:1,自引:0,他引:1  
Summary This study presents the results of a preliminary research that was conducted in the city of Eilat, located in an extreme hot and arid zone on the northern coast of the Red Sea. The purpose was to analyse the characteristics of the local urban heat island (UHI). Diurnal pre-dawn and early-afternoon measurements were taken in winter and summer weather conditions on three separate occasions for two consecutive years. The results show the development of a moderate UHI located around the most intensive area of human activity; the city business centre and dense hotel belt. The UHI is more significant at midday during the summer period, while early morning inversions in winter have a weakening effect on the UHI intensity. It was found that the topography and wind regime have a dominant effect on the location and intensity of the UHI, while the sea has a very marginal effect. Due to the UHI influences on the spatial distribution of the heat stress in the city, it is suggested that further applied UHI research should be focused on the summer period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号