首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have made an observational study of the newly identified cyanomethane radical CH2CN and the possibly related species CH3CN with the goals of (1) elucidating the possible role of reactions of the type CnHm(+) + N in astrochemistry, and (2) providing a possible test of Bates's models of dissociative electron recombination. We find a remarkably different abundance ratio CH2CN/CH3CN in TMC-1 and Sgr B2, which we deduce is a result of the large difference in temperature of these objects. Studies of CH2CN and CH3CN in other sources, including two new detections of CH2CN, support this conclusion and are consistent with a monotonic increase in the CH2CN/CH3CN ratio with decreasing temperature over the range 10-120 K. This behavior may be explained by the destruction of CH2CN by reaction with O. If this reaction does not proceed, then CH2CN and CH3CN are concluded to form via different chemical pathways. Thus, they do not provide a test of Bates's conjectures (they do not both form from CH3CNH+). CH2CN is then likely to form via C2H4(+) + N --> CH2CNH+, thus demonstrating the viability of this important reaction in astrochemistry. The T dependence of the CH2CN/CH3CN ratio would then reflect the increasing rate of the C2H4(+) + N reaction with decreasing temperature.  相似文献   

2.
Thermochemical data for several ion-molecule clustering of hydrocarbon ions with N2 or CH4 were obtained from clustering equilibria studies in gas mixtures irradiated by alpha-particles. High-pressure mass spectrometry was used to determine the enthalpy and entropy changes of clustering (delta H0 and delta S0, respectively) for the reactions X+(N2)n-1 + 2N2 <==> X(+)(N2)n + N2 with X = CH5, n = 1-2; X = C2H5, n = 1-4; and X = C3H7, n = 1. For X = CH5, the values (delta H0; delta S0) are found to be (-6.8 kcal mol-1; -19.7 cal mol-1 K-1) for n = 1, and (-5.3 kcal mol-1; -15.9 cal mol-1 K-1) for n = 2. For X = C2H5, (delta H0; delta S0) = (-6.9 kcal mol-1; -18.2 cal mol-1 K-1), for n = 1, and (-4.6 kcal mol-1; -20.8 cal mol-1 K-1) for n = 2. From the equilibrium measurements at 129 K, estimates of the thermochemical values could be obtained for n = 3-4. The results obtained for the free energy, delta G0, were -1.4 kcal mol-1 for n = 3, and -1.1 kcal mol-1 for n = 4. For X = C3H7 we found delta G0 = -0.7 kcal mol-1 at 213 K. The association reactions X+ + 2CH4 <==> X+(CH4) + CH4 with X = CH5, C2H5, C2H7, and C3H7 were also studied, resulting in free energy values at 206 K of -3.1, -1.9, -0.5 and -1.3 kcal mol-1, respectively. The results for CH5, C2H5 and C3H7 are compared with previously reported measurements.  相似文献   

3.
We report the astronomical identification of the cyanomethyl radical, CH2CN, the heaviest nonlinear molecular radical to be identified in interstellar clouds. The complex fine and hyperfine structures of the lowest rotational transitions at about 20.12 and 40.24 GHz are resolved in TMC-1, where the abundance appears to be about 5 x 10(-9) relative to that of H2. This is significantly greater than the observed abundance of CH3CN (methyl cyanide) in TMC-1. In Sgr B2 the hyperfine structure is blended in the higher frequency transitions at 40, 80, and 100 GHz, although the spin-rotation doubling is clearly evident. Preliminary searches in other sources indicate that the distribution of CH2CN is similar to that for such carbon chain species as HC3N or C4H.  相似文献   

4.
We have detected a new interstellar molecule, H2CN (methylene amidogen), in the cold, dark molecular cloud TMC-l. The column density of H2CN is estimated to be approximately 1.5 x 10(11) cm-2 by assuming an excitation temperature of 5 K. This column density corresponds to a fractional abundance relative to H2 of approximately 1.5 x 10(-11). This value is more than three orders of magnitude less than the abundance of the related molecule HCN in TMC-1. We also report a tentative detection of H2CN in Sgr B2(N). The formation mechanism of H2CN is discussed. Our detection of the H2CN molecule may suggest the existence of a new series of carbon-chain molecules, CH2CnN (n = 0, 1, 2,...).  相似文献   

5.
We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.  相似文献   

6.
Observations of the 1(01) --> 0(00) rotational transitions of A and E state acetaldehyde are reported. The transitions were detected, for the first time in interstellar space, in the cold dust clouds TMC-1 and L134N, and in Sgr B2. This is also the first time acetaldehyde has been found in a dust cloud and is the most complex oxygen-bearing molecule yet known in this environment. We find a column density of 6 x 10(12) cm-2 in TMC-1, comparable to many other species detected there, and an approximately equal column density in L134N. In the direction of Sgr B2, the CH3CHO profile appears to consist of broad emission features from the hot molecular cloud core, together with absorption features resulting from intervening colder material. We also report the possible detection of HC9N toward IRC +10 degrees 216 through its J = 33 --> 32 transition. Implications for cold dust cloud chemistry and excitation are discussed.  相似文献   

7.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   

8.
We have observed emission from HCN, H13CN, HC15N, HN13C, H15NC, HC3N, CH3CN, and possibly CH3NC, and determined an upper limit for NH2CN, toward the cold, dark cloud TMC-1. The abundance ratio [HNC]/[HCN] = 1.55 +/- 0.16 is at least a factor approximately 4 and approximately 100 greater than that observed toward the giant molecular clouds DR 21(OH) and Orion KL, respectively. In contrast, for the corresponding methylated isomers we obtain [CH3NC]/CH3CN] < or approximately 0.1. We also find [NH2CN]/[CH3CN] < or approximately 0.1 and [HC3N]/[CH3CN] = 30 +/- 10. We find no evidence for anomalous hyperfine ratios for H13CN, indicating that the ratios for HCN (cf. recent work of Walmsley et al.) are the result of self-absorption by cold foreground gas.  相似文献   

9.
An asymmetric-top free radical CH2CN, which as a 2B1 ground state, was detected for the first time by laboratory microwave spectroscopy. The radical was produced in a free-space absorption cell by a DC glow discharge in pure CH3CN gas. About 60 fine-structure components were observed for the N = 11-10 to 14-13 a-type rotational transitions in the frequency region of 220-260 GHz, and many hyperfine resolved components for the N = 4-3 and 5-4 transitions in the 80 and 100 GHz regions, respectively. The molecular constants, including the rotational constants, centrifugal distortion constants, and spin-rotation coupling constants with centrifugal distortion correction terms were determined from the fine-structure resolved transitions, and the hyperfine coupling constants due to the hydrogen and nitrogen nuclei were obtained from the low-N transitions. As a result we assigned U100602 and U80484 from Sgr B2, and U40240 and U20120 from TMC-1, to the N = 5-4, 4-3, 2-1, and 1-0 transitions with K-1 = 0 of the CH2CN radical.  相似文献   

10.
Observations of comet Hale-Bopp (C/1995 O1) have been carried out near perihelion (1997 March) at millimeter wavelengths using the NRAO 12 m telescope. The J=1-->0, 2-->1, and 3-->2 lines of HCN at 88, 177, and 265 GHz were measured in the comet as well as the J=3-->2 lines of H13CN, HC15N, and HNC. The N=2-->1 transition of CN near 226 GHz was also detected, and an upper limit was obtained for the J=2-->1 line of HCNH+. From the measurements, column densities and production rates have been estimated. A column density ratio of [HCN]/[HNC] = 7+/-1 was observed near perihelion, while it was found that [HCN]/[HCNH+] greater, similar 1. The production rates at perihelion for HCN and CN were estimated to be Q(HCN) approximately 1x1028 s-1 and Q(CN) approximately 2.6x1027 s-1, respectively, resulting in a ratio of [HCN]/[CN] approximately 3. Consequently, HCN is sufficiently abundant to be the parent molecule of CN in Hale-Bopp, and HCNH+ could be a source of HNC. Finally, carbon and nitrogen isotope ratios of 12C/13C = 109+/-22 and 14N/15N = 330+/-98 were obtained from HCN measurements, in agreement with previous values obtained from J=4-->3 data. Such ratios suggest that comet Hale-Bopp formed coevally with the solar system.  相似文献   

11.
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.  相似文献   

12.
McDonald GD  Thompson WR  Sagan C 《Icarus》1992,99(1):131-142
Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.  相似文献   

13.
A survey of the 4(04)-3(03) and 1(01)-0(00) transitions of HOCO+ has been made toward several molecular clouds. The HOCO+ molecule was not observed in any sources except Sgr B2 and Sgr A. The 5(05)-4(04) and 4(14)-3(13) transitions were also detected toward Sgr B2. The results indicate that gas phase CO2 is not a major carbon reservoir in typical molecular clouds. In Sgr B2, the HOCO+ antenna temperature exhibits a peak approximately 2' north of the Sgr B2 central position (Sgr B2[M]) and the 4(04)-3(03) line emission is extended over a approximately 10' x 10' region. The column density of HOCO+ at the northern peak in Sgr B2 is approximately 3 x 10(14) cm-2, and the fractional abundance relative to H2 > or = 3 x 10(-10), which is about 2 orders of magnitude greater than recent predictions of quiescent cloud ion-molecule chemistry.  相似文献   

14.
SiS has been conclusively detected toward Orion-KL via its J = 6-5 and J = 5-4 rotational transitions at 91 and 109 GHz. Line profiles indicate that the species is present at an LSR velocity of 7.5 km s-1 with a half-width at zero power of 36 km s-1. Such characteristics associate SiS with the moderate velocity outflow (V approximately 18 km s-1) centered on IRc2 and observed in thermal SiO, the NH3 "plateau," and OH, H2O, and SiO masers. The column density estimated for SiS in this region is Ntot = 4 x 10(15) cm-2, corresponding to a fractional abundance of f approximately 4 x 10(-9). Such an abundance implies an SiO/SiS ratio of approximately 60 in the outflow material, remarkably close to the cosmic O/S ratio of approximately 40 and contrasting with the SiO/SiS value of > approximately 10(3) predicted by ion-molecule models. This difference is probably a result of the high temperatures and densities present in the outflow, which favor thermal equilibrium abundances similar to those observed in the circumstellar shells of late-type stars rather than "ion-molecule"-type concentrations. In addition to SiS, some twenty new unidentified lines near 91 and 109 GHz were detected toward KL, as well as transitions arising from HC5N, HC13CCN, HCC13CN, O13CS, and, possibly, CH3CH2OH, CH3CHO, and CH3OD.  相似文献   

15.
We have conducted a deep search for HCCN towards the dark cloud TMC-l and several GMC's via its N(J) = 1(2)-->0(1) transition. HCCN was not detected in any of these sources. Towards TMC-l, assuming optically thin emission, the total column density upper limit is NHCCN < or = 2 x 10(12) cm-2, which corresponds to a fractional abundance upper limit with respect to molecular hydrogen of fHCCN < or = 2 x 10(-10). We find the abundance ratio of HCN:HCCN:HCCCN in TMC-l to be l : <0.01 : 0.3, which suggests that carbon-chain growth by the addition of single carbon atoms may not be efficient under dark cloud conditions. The HCCN abundance limit also places constraints on the branching ratio for the products of the dissociative electron recombination H3C2N+ + e.  相似文献   

16.
We report the first detection of interstellar nitrogen sulfide (NS) in cold dark clouds. Several components of the 2 pi 1/2, J = 3/2 --> 1/2 and J = 5/2 --> 3/2 transitions were observed in TMC-1 and L134N. The inferred column density for TMC-1 is NNS approximately 8 x 10(12)cm-2 toward the NH3 peak in that cloud, and in L134N is NNS approximately 3 x 10(12)cm-2 toward the position of peak NH3 emission. These values correspond to fractional abundances relative to molecular hydrogen of fNS approximately 8 x 10(-10) for TMC-1, and fNS approximately 6 x 10(-10) for L134N. The NS emission is extended along the TMC-1 ridge and is also extended in L134N. The measured abundances are significantly higher than those predicted by some recent gas phase ion-molecule models.  相似文献   

17.
Several interstellar molecules have been detected toward the highly perturbed B and G clouds associated with the supernova remnant IC 443 via their 3 mm transitions, including N2H+, SiO, SO, CN, HNC, and H13CO+. The (J, K) = (1, 1) and (2, 2) inversion lines of metastable ammonia have also been observed, as well as the J = 3-2 transition of HCO+ at 1.2 mm. Analysis of the (1, 1) and (2, 2) inversion lines of NH3 indicates minimum gas kinetic temperatures of TK = 70 K toward cloud B, and TK = 33 K in cloud G. Modeling of the J = 1-0 and J = 3-2 transitions of HCO+ implies densities greater than 10(5) cm-3 toward both positions. These data clearly show that hot and dense material is present in IC 443, and they suggest the presence of shocks in both regions. A careful analysis of the HCO+ lines indicates that the HCO+ abundance is at most enhanced by factors of a few over that found in cold, quiescent gas. This conclusion contradicts past claims of HCO+ abundance enhancements of several orders of magnitude in the perturbed regions. The N2H+ abundance was also found to be similar to that in cold gas, suggesting that there is no increase in ionization in the clouds. The abundances of SO and CS, as well as CN and NH3, do not appear to differ significantly from those found in cold dark clouds, although chemistry models predict sulfur-containing species to undergo high-temperature enhancements. SiO, however, is found to have an abundance in the perturbed gas 100 times larger than the upper limits observed in the dark cloud TMC 1, a result in agreement with high temperature chemistry models. In addition, the HNC/HCN ratio in both IC 443 B and G was found to be approximately 0.1--far from the ratio of 1 predicted by low-temperature ion-molecule chemistry, but similar to the values observed in clouds where elevated temperatures are present.  相似文献   

18.
A new interstellar molecule, methylcyanoacetylene (CH3C3N), has been detected in the molecular cloud TMC-1. The J = 8 --> 7, J = 7 --> 6, J = 6 --> 5, and J = 5 --> 4 transitions have been observed. For the first three of these, both the K = 0 and K = 1 components are present, while for J = 5 --> 4, only the K = 0 line has been detected. The observed frequencies were calculated by assuming a value of radial velocity VLSR = 5.8 km s-1 for TMC-1, typical of other molecules in the cloud. All observed frequencies are within 10 kHz of the calculated frequencies, which are based on the 1982 laboratory constants of Moises et al., so the identification is secure. The lines are broadened by hyperfine splitting, and the J = 5 --> 4, K = 0 transition shows incipient resolution into three hyperfine components. The rotational temperature determined for these observations is quite low, with 2.7 K < or = Trot < or = 4 K. the total column density is approximately 5 x 10(12) cm-2.  相似文献   

19.
Observations of nine oxygen- and sulfur-containing organic molecules have been made toward the cold dark clouds TMC-1 and L134N. We have confirmed the presence of para-ketene (H2C2O) in TMC-1, have for the first time observed ortho-ketene, and find a total ketene column density approximately 1 x 10(13) cm-2. Thioformaldehyde (H2CS) is easily detectable in both TMC-1 and L134N, with a column density about 5 times larger in the former source (approximately 3 x 10(13) cm-2). The fractional abundance of ketene is comparable to the predictions of ion-molecule chemistry, while that of thioformaldehyde in TMC-1 is one to two orders of magnitude greater than that expected from such models at steady state. Interstellar sulfur chemistry thus continues to be poorly understood. We set upper limits for the column densities of formic acid (HCOOH), vinyl alcohol (CH2CHOH), methyl formate (HCO2CH3), formamide (NH2CHO), methyl mercaptan (CH3SH), isothiocyanic acid (HNCS), and thioketene (H2C2S) in both sources.  相似文献   

20.
A coupled problem of diffusion and condensation is solved for the H2SO4-H2O system in Venus' cloud layer. The position of the lower cloud boundary and profiles of the H2O and H2SO4 vapor mixing ratios and of the H2O/H2SO4 ratio of sulfuric acid aerosol and its flux are calculated as functions of the column photochemical production rate of sulfuric acid, phi H2SO4. Variations of the lower cloud boundary are considered. Our basic model, which is constrained to yield fH2O (30 km) = 30 ppm (Pollack et al. 1993), predicts the position of the lower cloud boundary at 48.4 km coinciding with the mean Pioneer Venus value, the peak H2SO4 mixing ratio of 5.4 ppm, and the H2SO4 production rate phi H2SO4 = 2.2 x 10(12) cm-2 sec-1. The sulfur to sulfuric acid mass flux ratio in the clouds is 1 : 27 in this model, and the mass loading ratio may be larger than this value if sulfur particles are smaller than those of sulfuric acid. The model suggests that the extinction coefficient of sulfuric acid particles with radius 3.7 micrometers (mode 3) is equal to 0.3 km-1 in the middle cloud layer. The downward flux of CO is equal to 1.7 x 10(12) cm-2 sec-1 in this model. Our second model, which is constrained to yield fH2SO4 = 10 ppm at the lower cloud boundary, close to the value measured by the Magellan radiooccultations, predicts the position of this boundary to be at 46.5 km, which agrees with the Magellan data; fH2O(30 km) = 90 ppm, close to the data of Moroz et al. (1983) at this altitude; phi H2SO4 = 6.4 x 10(12) cm-2 sec-1; and phi co = 4.2 x 10(12) cm-2 sec-1. The S/H2SO4 flux mass ratio is 1 : 18, and the extinction coefficient of the mode 3 sulfuric acid particles is equal to 0.9 km-1 in the middle cloud layer. A strong gradient of the H2SO4 vapor mixing ratio near the bottom of the cloud layer drives a large upward flux of H2SO4, which condenses and forms the excessive downward flux of liquid sulfuric acid, which is larger by a factor of 4-7 than the flux in the middle cloud layer. This is the mechanism of formation of the lower cloud layer. Variations of the lower cloud layer are discussed. Our modeling of the OCS and CO profiles in the lower atmosphere measured by Pollack et al. (1993) provides a reasonable explanation of these data and shows that the rate coefficient of the reaction SO3 + CO --> CO2 + SO2 is equal to 10(-11) exp(-(13,100 +/- 1000)/T) cm3/s. The main channel of the reaction between SO3 and OCS is CO2 + (SO)2, and its rate coefficient is equal to 10(-11) exp(-(8900 +/- 500)T)cm3/s. In the conditions of Venus' lower atmosphere, (SO)2 is removed by the reaction (SO)2 + OCS --> CO + S2 + SO2. The model predicts an OCS mixing ratio of 28 ppm near the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号