首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Studying the sandwich composite propeller (SCMP) is of great significance since the sandwich structure is lightweight and possesses high strength. This study proposes and verifies a fluid–structure interaction (FSI) method for a 3D underwater sandwich composite structure to calculate the performance of the propeller. The Reynolds-averaged Navier–Stokes formula-based computational fluid dynamics is adopted to solve for propeller loads, whereas the finite element method (FEM) is applied to solve for propeller deformations. ANSYS Workbench’s system coupling is utilized to deliver the loads and deformations in the FSI. The paper also compares the propulsive performance and structural response of the SCMP and conventional composite propeller (CMP). The impact of the structural form and core material on the SCMP is explored. The results show that the weight reduction effect of the SCMP is better than that of the CMP, the propulsive efficiency of the SCMP is higher at low advance coefficients and lower at high advance coefficients, and the maximum pitch angles of the SCMP decrease at all conditions, unlike the case for the CMP. Moreover, the thinner the facing of the SCMP, the greater the influence of the higher twist–deformation ratio of the resulting structural form on the intrinsic frequency.  相似文献   

2.
The hydrodynamic characteristics of a marine propeller operating in oblique inflow are investigated by using CFD method. Two propellers with different geometries are selected as the study subjects. RANS simulation is carried out for the propellers working at a wide range of advance coefficients and incidence angles. The effects of axial inflow and lateral inflow are demonstrated with the hydrodynamic force on the propeller under different working conditions. Based on the obtained flow field details, the hydrodynamic mechanism of propeller operating in oblique inflow is analyzed further. The trailing vortex wake of propeller is highly affected by the lateral inflow, resulting in the deflected development path and the circumferentially non-uniform structure, as well as the enhanced axial velocity in slipstream. Different flow patterns are observed on the propeller blade with the variation of circumferential position. Combined with the computed hydrodynamic forces and pressure distribution on propeller, the mechanism resulting in the increase of propulsive loads and the generation of propeller side force is explored. Finally, a systematic analysis is carried out for the propulsive loads and propeller side force as a function of axial and lateral advance coefficients. The major terms that play a dominant role in the modeling of propulsive loads and propeller side force are determined through the sensitivity analysis. This study provides a deeper insight into the hydrodynamic characteristics of propeller operating in oblique inflow, which is useful to the investigation of propeller performance during ship maneuvers.  相似文献   

3.
In traditional naval architecture design methodologies optimization of the hull and propeller are done in two separate phases. This sequential approach can lead to designs that have sub-optimal fuel consumption and, thus, higher operational costs. This work presents a method to optimize the propeller–hull system simultaneously in order to design a vessel to have minimal fuel consumption. The optimization uses a probabilistic mission profile, propeller–hull interaction, and engine information to determine the coupled system with minimum fuel cost over its operational life. The design approach is tested on a KCS SIMMAN container ship using B-series propeller data and is shown to reduce fuel consumption compared to an optimized traditional design approach.  相似文献   

4.
This paper is the continuation of the work described in [14], dedicated to the presentation of the results of propeller performance in behind-hull during straight ahead motion obtained by a novel experimental set-up for the measurements of single blade loads. In the present case, the study shows and discusses the single blade and propeller loads developed during steady turning conditions, that were simulated by means of free running, self propelled maneuvering tests for a twin screw configuration. Maneuvering conditions are critical for the ship propulsion system, because the performance of the propeller and the side effects related to its functioning (propeller–hull induced pressure and vibrations, noise) are completely different with respect to the design condition in straight ahead motion. Thrust and torque and generation of in-plane loads (force and moments), developed by the blade during the period, evolve differently for the two propellers, due to different propeller–wake interactions. The understanding and the accurate quantification of propeller loads, in these realistic operative scenarios, are pivotal to design low emission and comfortable ships, fulfilling the requirements of safety and continuity of operations at sea. The analysis is carried out revisiting the investigation in [14] for three different speeds (FN = 0.26, 0.34 and 0.40) and a large set of rudder angles that span moderate and tight maneuvers.  相似文献   

5.
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.  相似文献   

6.
The present investigation focuses on the effects of the stern appendages and the propulsion system on the hydro-loads generated by the propeller during off-design conditions, with particular emphasis on the in-plane components. Recent experimental investigations carried out by free running model tests [7], [8] and CFD analysis [5] for a modern twin screw model, highlighted that maneuvers at small drift angles and yaw rates might be as critical as the tighter ones due to complex propeller-wake interactions. Therefore, design criteria should take into account also these operative conditions, in order to reduce the effects of propeller-wake interaction phenomena that degrade the overall propulsive efficiency, induce shaft/hull structural vibration and increase noise emission. In the present study we analyze the effects of geometric and propulsive modifications with respect to the twin screw configuration studied in [5]. In particular, the effect of the centreline skeg, propeller direction of rotation and control strategies of the propulsion plant on the propeller bearing loads have been investigated from the analysis of the nominal wake in maneuvring conditions, computed by unsteady RANSE simulations coupled with a propeller model based on Blade Element Theory. The considered test cases were turning circle maneuvers with different rudder angles at FN = 0.265.  相似文献   

7.
Marine cycloidal propulsion system is efficient in maneuvering ships like tugs, ferries, etc. It is capable of vectoring thrust in all direction in a horizontal plane. When used in pair, the system enables a vessel to perform maneuvers like moving sideways, perform rotation about a point, i.e. turning diameter of its own length, etc. In this system, the propeller blades have to change their angle of attack at different angular position of the disc. Due to this reason, the inflow velocity vector to propeller blades changes continuously. The propeller blade oscillates about a vertical axis passing through its body and at the same time rotates about a point. Superposed on these motions is the dynamics of the ship on which the propulsion system is installed. This results in a formidable and challenging hydrodynamics problem. Each of the propeller blade sections could be considered as an aerofoil operating in combined heave and pitch oscillation mode. Due to the constantly varying inflow velocity, the hydrodynamic flow is unsteady. The unsteady hydrodynamic flow is simulated by incorporating the effect of shed vortices at different time instant behind the trailing edge. Due to the kinematics of the problem, the blade is subjected to higher structural deformation and vibration load. The structural deformation and vibration when coupled with the hydrodynamic loading add another level of complexity to the problem. In this paper, the variation of hydrodynamic load on the propeller blade due to steady and unsteady flow is compared. We also model the structural dynamics of the blade and study its effect on the hydrodynamic loading. Finally, we couple the structural dynamics with hydrodynamics loading and study its influence on the propeller blade for different operating regimes.  相似文献   

8.
杨冬宝  季顺迎 《海洋工程》2021,39(2):134-143
当船舶在冰区航行时,螺旋桨会与海冰相互碰撞并导致桨叶的变形和损坏,进而影响船舶的航行安全。为研究海冰与螺旋桨的相互作用过程,采用离散元(DEM)—有限元(FEM)耦合方法构建海冰—螺旋桨切削模型。海冰和螺旋桨模型分别采用具有黏结—破碎特性的球体离散单元和8节点六面体有限单元构造。基于该DEM-FEM耦合模型讨论了不同切削深度下,螺旋桨所承受冰载荷的特点和规律;最后,研究了螺旋桨切削海冰过程中进速系数、推力系数、扭矩系数之间的对应关系,并讨论了海冰—螺旋桨相互作用过程中冰压力、Mises应力和变形的分布特点。以上研究可为寒区船舶安全航行和螺旋桨设计提供有益的参考。  相似文献   

9.
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The ...  相似文献   

10.
Marine propellers usually operate in a spatially nonuniform wake and then the propeller exciting forces are produced. These exciting forces will cause serious hull vibration and noise radiation. So, there are many researches on the exciting forces of propellers. However, the effects of the shaft and blade elasticity are ignored in most studies. Therefore, firstly, considered the effects of the shaft and blade elasticity, a fluid–structure interaction dynamic model of the fluid-propeller-shaft system is established by coupled BEM and FEM. Then, based on this model, the characteristics of axial exciting force and theirs transmission mechanism to the hull via the shaft are studied. The research results show that first, there are two kinds of vibration modes for blade bending vibration: global mode and local mode. The elastic coupling effect between the blade and the shafting only affects the global mode, but hardly affects the local mode of the blade. Secondly, during the transmission of axial exciting force to the hull through the blades and shafting, only the global mode of the blades can amplify it, while the local mode cannot. These studies could provide a guideline for the optimal design of the propeller-shaft system to make the exciting force transmitted to the ship hull via the shafting be the smallest.  相似文献   

11.
Propeller modelling in CFD simulations is a key issue for the correct prediction of hull-propeller interactions, manoeuvring characteristics and the flow field in the stern region of a marine vehicle. From this point of view, actuator disk approaches have proved their reliability and computational efficiency; for these reasons, they are commonly used for the analysis of propulsive performance of a ship. Nevertheless, these models often neglect peculiar physical phenomena which characterise the operating propeller in off-design condition, namely the in-plane loads that are of paramount importance when considering non-standard or unusual propeller/rudder arrangements. In order to emphasize the importance of these components (in particular the propeller lateral force) and the need of a detailed propeller model for the correct prediction of the manoeuvring qualities of a ship, the turning circle manoeuvre of a self-propelled fully appended twin screw tanker-like ship model with a single rudder is simulated by the unsteady RANS solver χnavis developed at CNR-INSEAN; several propeller models able to include the effect of the strong oblique flow component encountered during a manoeuvre have been considered and compared. It is emphasized that, despite these models account for very complex and fundamental physical effects, which would be lost by a traditional actuator disk approach, the increase in computational resources is almost negligible. The accuracy of these models is assessed by comparison with experimental data from free running tests. The main features of the flow field, with particular attention to the vortical structures detached from the hull are presented as well.  相似文献   

12.
In the present study, cavitation and a ship propeller wake are reported by computed fluid dynamics based on viscous multiphase flow theory. Some recent validation results with a hybrid grid based on unsteady Navier-Stokes (N-S) and bubble dynamics equations are presented to predict velocity, pressure and vapor volume fraction in propeller wake in a uniform inflow. Numerical predictions of sheet cavitation, tip vortex cavitation and hub vortex cavitation are in agreement with the experimental data, same as numerical predictions of longitudinal and transversal evolution of the axial velocity. Blade and shaft rate frequency of propeller is well predicted by the computed results of pressure, and tip vortex is the most important to generate the pressure field within the near wake. The overall results indicate that the present approach is reliable for prediction of cavitation and propeller wake on the condition of uniform inflow.  相似文献   

13.
高锰铝青铜在流动海水中阴极保护参数的研究   总被引:3,自引:0,他引:3  
采用稳态动电位极化法测量了螺旋桨材料ZQAl12-8-3-2高锰铝青铜在静态和流动海水中的极化曲线,分析了其在流动海水中的腐蚀电化学行为,解析了最小保护电位、最大保护电位、最小保护电流密度等阴极保护参数,其在海水中的保护电位范围为-0.45~0.72V,最大保护电位在常规阴极保护范围内没有限制,流动海水中的最小保护电流密度比静态时增加几十倍,为海水中螺旋桨阴极保护设计及应用提供参考数据。  相似文献   

14.
Surface-Piercing Propellers (SPPs) are the preferred propulsion system for light to moderately loaded high-speed applications due to the high fuel efficiency. For highly loaded applications, the efficiency of SPPs tends to decrease because of the limited submerged blade area and the presence of large suction side cavities. Moreover, it is a challenge to design large-scale SPPs that can maintain reliable fatigue strength and avoid vibration issues while maximizing the propeller thrust for a given power input. In this work, three SPP designs are presented for different size Surface Effect Ships (SESs) that can attain a maximum advance speed of 25.72 m/s (50 knots). A previously developed and validated three-dimensional (3-D) coupled boundary element method-finite element method (BEM-FEM) is used for the transient hydroelastic analysis of SPPs. The method is validated by comparing the predicted hydrodynamic performance with those obtained using a vortex-lattice method (VLM) and a Reynolds Averaged Navier-Stokes (RANS) solver. The hydrodynamic and structural dynamic performance of the SPPs are presented. Finally, challenges associated with the design related analyzes of large-scale SPPs are discussed.  相似文献   

15.
海上风力发电单立柱支撑结构拟静力分析   总被引:1,自引:0,他引:1  
海上风电支撑结构不同于一般海洋结构物,它受到复杂的风机气动荷载、机械控制荷载和海洋环境荷载的多重作用。文章针对海上某单立柱风电支撑结构,通过分析其结构固有频率的约束限制以及外环境荷载的动力特性,综合考虑外环境荷载尤其是风机荷载的动力放大影响,给出海上单立柱风电支撑结构的拟静力分析思路。并进行极端及操作工况下支撑结构在风、浪、流环境荷载组合作用的应力计算和强度分析。提出该种结构在使用现有海洋结构物设计规范和风机设计规范时的注意事项。该分析比较结果及结论可作为海上类似风电支撑结构的设计参考。  相似文献   

16.
The use of an unsteady computational fluid dynamic analysis of the manoeuvring performance of a self-propelled ship requires a large computational resource that restricts its use as part of a ship design process. A method is presented that significantly reduces computational cost by coupling a blade element momentum theory (BEMT) propeller model with the solution of the Reynolds averaged Navier Stokes (RANS) equations. The approach allows the determination of manoeuvring coefficients for a self-propelled ship travelling straight ahead, at a drift angle and for differing rudder angles. The swept volume of the propeller is divided into discrete annuli for which the axial and tangential momentum changes of the fluid passing through the propeller are balanced with the blade element performance of each propeller section. Such an approach allows the interaction effects between hull, propeller and rudder to be captured. Results are presented for the fully appended model scale self-propelled KRISO very large crude carrier 2 (KVLCC2) hull form undergoing static rudder and static drift tests at a Reynolds number of 4.6×106 acting at the ship self-propulsion point. All computations were carried out on a typical workstation using a hybrid finite volume mesh size of 2.1×106 elements. The computational uncertainty is typically 2–3% for side force and yaw moment.  相似文献   

17.
Traditionally, propeller design has been focused on all activities necessary to obtain a propeller featuring a high efficiency, avoiding erosive cavitation for given operating conditions and having adequate structural strength. In recent years, more and more challenging requirements have been imposed, such as the reduction of radiated noise and pressures pulses, requiring more precise analyses and methods in the optimization of the propeller performance. On the other hand, the evaluation of the propeller strength still relies on simplified methods, which basically consider the blade as a cantilever beam subjected to characteristic static forces. Since the loads acting on a blade are variable in the blade revolution and in different operating conditions throughout the ship life, a procedure to account for the influence of fatigue phenomena is proposed. The fatigue assessment could reduce the safety factor in the propeller scantling rules and allow improving the quality of propeller design (e.g. obtaining higher efficiency, margin on cavitation phenomena, less noise).  相似文献   

18.
In this paper, the flow-induced vibrations of marine propellers in cyclic inflows are investigated both experimentally and numerically. A Laser-Doppler velocimetry (LDV) system is used to measure the axial flow velocity distributions produced by the seven-cycle wake screen in the water tunnel. A customized underwater slip ring and a single axis accelerometer sealed by silicon sealant are employed to measure the acceleration responses of rotating propeller blade. Numerical simulations of pressure fluctuations on the blades are performed using large eddy simulation (LES), while the forced vibrations of the propeller blades are obtained by a combined finite element and boundary element method. Experimental and numerical results are presented for two model propellers with the same geometries and different flexible properties, which show that the propeller blade vibrates at a frequency which is seven times as large as the axial passing frequency (APF) in the seven-cycle inflow. Moreover, the propeller blades are observed to resonance when the 7 APF excitation frequency is equal to the fundamental frequency of the propellers. The results indicate that both the inflow feature and the modal characteristic of blades contribute to flow-induced vibrations of elastic propellers.  相似文献   

19.
A two-frame particle image velocimetry (PIV) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from 0° to 80°, 150 instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors in the propeller wake region. The slipstream contraction occurs in the near-wake region up to about X/D=0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.  相似文献   

20.
Surface Piercing Propellers (SPPs) are a particular kind of propellers which are partially submerged operating at the interface of air and water. They are more efficient than submerged propellers for the propulsion system of high-speed crafts because of larger propeller diameter, replacing cavitation with ventilation, decreasing the torque and higher efficiency. This study presents a reliable numerical simulation to predict SPP performance using Unsteady Reynolds-Averaged Navier–Stokes (URANS) method. A numerical study on 841-B SPP is performed in open water condition. The free surface is modeled by Volume of Fluid (VOF) approach and the sliding mesh technique is implemented to model the propeller rotational motion. The sliding mesh allows capturing the process of water entry and water exit of blades. The propeller hydrodynamic characteristics, the ventilation pattern and the time history of blade loads are validated through the comparison with available experimental data. For the studied case, it was found that the common grid independence study approach is not sufficient. The grid should be elaborately generated fine enough based on the flow pattern and turbulence modeling parameters in regions near the blade's tip, trailing and leading edges and over the suction side. Details of URANS simulations including optimal time-step size based on propeller revolution rate and the required number of propeller revolutions for periodical results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号