首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zdeněk Švestka 《Solar physics》1989,121(1-2):399-417
One has to distinguish between two kinds of the gradual phase of flares: (1) a gradual phase during which no energy is released so that we see only cooling after the impulsive phase (a confined flare), and (2) a gradual phase during which energy release continues (a dynamic flare).The simplest case of (1) is a single-loop flare which might provide an excellent opportunity for the study of cooling processes in coronal loops. But most confined flares are far more complicated: they may consist of sets of unresolved elementary loops, of conglomerates of loops, or they form arcades the components of which may be excited sequentially. Accelerated particles as well as hot and cold plasma can be ejected from the flare site (coronal tongues, flaring arches, sprays, bright and dark surges) and these ejecta may cool more slowly than the source flare itself.However, the most important flares on the Sun are flares of type (2) in which a magnetic field opening is followed by subsequent reconnection of fieldlines that may continue for many hours after the impulsive phase. Therefore, the main attention in this review is paid to the gradual phase of this category of long-decay flares. The following items are discussed in particular: The wide energy range of dynamic flares: from eruptions of quiescent filaments to most powerful cosmic-ray flares. Energy release at the reconnection site and modelling of the reconnection process. The post-flare loops: evidence for reconnection; observations at different wavelengths; energy deposit in the chromosphere, chromospheric ablation, and velocity fields; loops in emission; shrinking loops; magnetic modelling. The gradual phase in X-rays and on radio waves. Post-flare X-ray arches: observations, interpretation, and modelling; relation to metric radio events and mass ejections, multiple-ribbon flares and anomalous events, hybrid events, possible relations between confined and dynamic flares.  相似文献   

2.
We examine observational evidence concerning energy release in solar flares. We propose that different processes may be operative on four different time scales: (a) on the sub-second time scale of sub-bursts which are a prominent feature of mm-wave microwave records; (b) on the few-seconds time scale of elementary bursts which are a prominent feature of hard X-ray records; (c) on the few-minutes time scale of the impulsive phase; and (d) on the tens-of-minutes or longer time scale of the gradual phase.We propose that the concentration of magnetic field into magnetic knots at the photosphere has important consequences for the coronal magnetic-field structure such that the magnetic field in this region may be viewed as an array of elementary flux tubes. The release of the free energy of one such tube may produce an elementary burst. The development of magnetic islands during this process may be responsible for the sub-bursts. The impulsive phase may be simply the composite effect of many elementary bursts.We propose that the gradual phase of energy release, with which flares typically begin and with which many flares end, involves a steady process of reconnection, whereas the impulsive phase involves a more rapid stochastic process of reconnection which is a consequence of mode interaction.In the case of two-ribbon flares, the late part of the gradual phase may be attributed to reconnection of a large current sheet which is being produced as a result of filament eruption. A similar process may be operative in smaller flares.Also, Department of Applied Physics, Stanford University.  相似文献   

3.
We present the results of a detailed analysis of multi-wavelength observations of a very impulsive solar flare 1B/M6.7, which occurred on 10 March, 2001 in NOAA AR 9368 (N27 W42). The observations show that the flare is very impulsive with a very hard spectrum in HXR that reveal that non-thermal emission was most dominant. On the other hand, this flare also produced a type II radio burst and coronal mass ejections (CME), which are not general characteristics for impulsive flares. In H we observed bright mass ejecta (BME) followed by dark mass ejecta (DME). Based on the consistency of the onset times and directions of BME and CME, we conclude that these two phenomena are closely associated. It is inferred that the energy build-up took place due to photospheric reconnection between emerging positive parasitic polarity and predominant negative polarity, which resulted as a consequence of flux cancellation. The shear increased to >80 due to further emergence of positive parasitic polarity causing strongly enhanced cancellation of flux. It appears that such enhanced magnetic flux cancellation in a strongly sheared region triggered the impulsive flare.  相似文献   

4.
Solar flares and magnetospheric substorms are discussed in the context of a general theory of impulsive flux transfer events (IFTE). IFTE theory, derived from laboratory observations in the Double Inverse Pinch Device (DIPD), provides a quantitative extension of neutral sheet theories to include nonsteady field line reconnection. Current flow along the reconnection line increases with magnetic flux storage. When flux build-up exceeds the level corresponding to a critical limit on the current, instabilities induce a sudden transition in the mode of conduction. The resulting IFTE, indifferent to the specific modes and instabilities involved, is the more energetic, the lower the initial resistivity. It is the more violent, the greater the resulting resistivity increase and the faster its growth. Violent events can develop very large voltage transients along the reconnection line. Persistent build-up promoting conditions produce relaxation oscillations in the quantity of flux and energy stored (build-up-IFTE cycles). It is difficult to avoid the conclusion: flares and substorms are examples of IFTE.  相似文献   

5.
Several laboratory experiments on magnetic field line reconnection are briefly reviewed. Emphasis is placed on the double inverse pinch device (DIPD) in which magnetic flux is built up during a quiescent reconnection phase and then abruptly transferred during an impulsive reconnection phase. Scaling estimates show that this impulsive phase corresponds to a solar release of 1030 ergs in 102 seconds with the production of GeV potentials. The trigger for the impulsive flare is a conduction mode instability (ion-acoustic) which abruptly changes the resistance of the neutral point region when the reconnection current density reaches a critical value.Some results are presented from another reconnection device which has exactly antiparallel fields at the boundaries. This flat plate device develops one x-type neutral point rather than tearing into many neutral points. The reconnection rate is more quiescent than in the DIPD. A mild conduction mode instability occurs. The results suggest that regions with flattened boundary fields may not be as conducive to flares as regions with more curved fields.  相似文献   

6.
Livshits  M. A. 《Solar physics》1997,173(2):377-381
Recent observations have provided much real information about the acceleration of particles in solar flares. High-reliability data about accelerated particles have been obtained for an impulsive phase of some flares of the activity cycle XXII. Therefore, it seems reasonable to re-estimate the amount of Li atoms produced in the upper photospheric layers by – reactions. A value of 5 × 10 29 nuclei during the largest impulsive solar events has been found from calculations for the thick-target model. This agrees with observations of the line of lithium. In conclusion, the probability of enhanced Li absorption observed after large impulsive flares in the sunspot penumbra is discussed.  相似文献   

7.
The active region NOAA 6555 had several locations of highly sheared magnetic field structure, yet, only one of them was the site for all the five X-class flares during its disk passage in March 1991. The pre-flare observations of high-resolution H filtergrams, vector magnetograms and H Dopplergrams of the 2B/X5.3 flare on 25 March 1991 show that the flaring site was characterized by a new rising emerging flux region (EFR) near the highly sheared magnetic field configuration. The polarity axis of the emerging flux was nearly perpendicular to the pre-existing magnetic neutral line. The location of the EFR was the site of initial brightening in H. The post-flare magnetograms show higher magnetic shear at the flare location compared to the post-flare magnetograms, which might indicate that the EFR was sheared at the time of its emergence. As the new EFR coincided with the occurrence of the flare, we suggest that it might have triggered the observed flare. Observations from Big Bear Solar Observatory and Marshall Space Flight Center also show that there was emergence of new flux at the same location prior to two other X-class flares. We find that out of five observed X-class flares in NOAA 6555, at least in three cases there are clear signatures of flare-related flux emergence. Therefore, it is concluded that EFRs might play an important role in destabilizing the observed sheared magnetic structures leading to large X-class flares of NOAA 6555.  相似文献   

8.
Veronig  A.  Vršnak  B.  Temmer  M.  Hanslmeier  A. 《Solar physics》2002,208(2):297-315
The timing of 503 solar flares observed simultaneously in hard X-rays, soft X-rays and H is analyzed. We investigated the start and the peak time differences in different wavelengths, as well as the differences between the end of the hard X-ray emission and the maximum of the soft X-ray and H emission. In more than 90% of the analyzed events, a thermal pre-heating seen in soft X-rays is present prior to the impulsive flare phase. On average, the soft X-ray emission starts 3 min before the hard X-ray and the H emission. No correlation between the duration of the pre-heating phase and the importance of the subsequent flare is found. Furthermore, the duration of the pre-heating phase does not differ for impulsive and gradual flares. For at least half of the events, the end of the non-thermal emission coincides well with the maximum of the thermal emission, consistent with the beam-driven evaporation model. On the other hand, for 25% of the events there is strong evidence for prolonged evaporation beyond the end of the hard X-rays. For these events, the presence of an additional energy transport mechanism, most probably thermal conduction, seems to play an important role.  相似文献   

9.
We describe and analyse observations of an M1.4 flare which began at 17: 00 UT on 12 November, 1980. Ground based H and magnetogram data have been combined with EUV, soft and hard X-ray observations made with instruments on-board the Solar Maximum Mission (SMM) satellite. The preflare phase was marked by a gradual brightening of the flare site in Ov and the disappearance of an H filament. Filament ejecta were seen in Ov moving southward at a speed of about 60 km s–1, before the impulsive phase. The flare loop footpoints brightened in H and the Caxix resonance line broadened dramatically 2 min before the impulsive phase. Non-thermal hard X-ray emission was detected from the loop footpoints during the impulsive phase while during the same period blue-shifts corresponding to upflows of 200–250 km s–1 were seen in Ca xix. Evidence was found for energy deposition in both the chromosphere and corona at a number of stages during the flare. We consider two widely studied mechanisms for the production of the high temperature soft X-ray flare plasma in the corona, i.e. chromospheric evaporation, and a model in which the heating and transfer of material occurs between flux tubes during reconnection.  相似文献   

10.
DOUBLE-LOOP CONFIGURATION OF SOLAR FLARES   总被引:2,自引:0,他引:2  
Hanaoka  Yoichiro 《Solar physics》1997,173(2):319-346
We analyzed several flares, which are presumed to be caused by interactions between an emerging loop and an overlying loop. We call such a basic combination of loops a double-loop configuration, and we reveal its topology on the basis of the microwave and soft X-ray observations of the flares and the magnetograms. In many cases, the magnetic field of the flare loops shows a bipolar + remote unipolar structure, rather than a quadrapole structure. The footpoints of two loops are distributed in three magnetic patches, and two of the footpoints of the loops, one from the emerging loop and the other from the overlying loop, are included in a single magnetic polarity patch. Therefore, the two loops form a three-legged structure, and the two loops are not anti-parallel as assumed in the traditional reconnection models. Typically, the emergence of a parasitic polarity near the major preceding-polarity region or the following one in an active region creates this configuration, but, in one of the analyzed flares, two active regions are involved in the configuration. Not only the flares, but various other active phenomena – microflares, thermal plasma flows like jets, and surges – occur in the same magnetic configuration. Hence, the interaction between two loops, which forms the three-legged structure, is an important source of the various types of activity.  相似文献   

11.
Taeil Bai 《Solar physics》1979,62(1):113-121
The X-ray line at 6.4 keV has been observed from solar flares. It is found that K-fluorescence of neutral iron in the photosphere due to thermal (T 107 K) X-rays of the gradual phase is its dominant production mechanism. For a given flux and energy spectrum of incident X-rays, the flux at 1 AU of iron K-photons depends on the photospheric iron abundance, the height of the X-ray source, and the helio-centric angle between the flare and the observer. Therefore, the flux of iron K-photons, when measured simultaneously with the flux and energy spectrum of the X-ray continuum and the flare location, can give us information on the height of the X-ray source and the photospheric iron abundance. Here we present our Monte Carlo calculations of iron K-fluorescence efficiencies, so that they might be useful for interpretations of future measurements of the 6.4 keV line (e.g., by a detector to be flown on the Solar Maximum Mission).  相似文献   

12.
We consider potential sources of infrared (1 to 1 mm) continuum in solar flares. Several mechanisms should produce detectable fluxes: in the 350 window for ground-based observations, impulsive emission will arise in synchrotron radiation from 1–10 MeV electrons, and possibly thermal (free-free) continuum from the source of the white-light flare; the hot flare plasma responsible for soft X-ray emission will also emit detectable fluxes of free-free continuum in the largest flares. At shorter wavelengths the dominant infrared emission will come from the H flare itself. Observations in the infrared wavelengths will help to complete our picture of flare structure in both the impulsive and gradual phases.  相似文献   

13.
Simple self-consistent models for non-neutral current sheets are considered. Characteristics of high-temperature turbulent current sheets (HTCS) with a small transverse component of magnetic field are determined for conditions in the solar corona. The energy output of such an HTCS is much larger than that of a neutral sheet. This makes it possible to consider the HTCS as an energy source not only in long-lived X-ray loops but also in flaring loops during the not or main phase of a flare. In this case, the magnetic reconnection velocity agrees with the observed velocity of the loop rise. Thus, these phenomena can be interpreted as a result of magnetic reconnection, for example, between new flux emerging from under the photosphere and an old magnetic field.The role of a longitudinal magnetic field in a current sheet is less important for HTCS. As a result of the compression of a longitudinal field, there appears an electric current circulating around the sheet. This current may induce strong Joule heating, if the compression is large. This additional heating is realized because of the annihilation of the main component, not the longitudinal component of magnetic field. The effect is small for HTCS, but may be significant for preflare current sheets.  相似文献   

14.
A large delta spot (active region NOAA 6891, October 23 – November 4, 1991) is analysed, and it is found that some spiral filaments across the spot can be regarded as signatures of a singular point entity (SPE) which lies near a separator of this complicated magnetic field region. Near such an entity, 86% of the flares in the region were produced, including two white-light flares, one of which, being the largest flare of the region, was accompanied by a powerful mass ejection. In an island delta spot, a SPE could be recognized very close to the usual U-shaped inversion lines. Together with the other characteristics (bright H emission, highly sheared magnetic field, umbra obscured by H, magnetic flux imbalance in the range 21–31), the SPE can help us to predict effectively the sites for great flares to occur (Zirin and Liggett, 1987).On leaving from Purple Mountain Observatory, Nanjing, China.  相似文献   

15.
Z. Švestka 《Solar physics》1971,19(1):202-206
Under the assumption that white-light flares are caused by energetic particles penetrating into the photosphere (vestka, 1970a; Najita and Orrall, 1970) the known number of protons needed for the white-light emission is used to obtain an estimate of the production of neutrons occurring at the same time. In the case of the white-light flare of 23 May, 1967, the peak flux of neutrons at the Earth distance had to exceed 3 neutrons/cm2s, thus being detectable in space. This maximum neutron flux reached the Earth as early as the time of the maximum phase of the flare in the H light. However, reasonable estimates show that flares associated with a detectable neutron flux should be fairly rare phenomena, maybe as rare as the white-light flares.On leave from the Astronomical Institute of the Czechoslovak Academy of Sciences, Ondejov.  相似文献   

16.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   

17.
Silva  Adriana V.R.  Lin  R.P.  de Pater  Imke  White  Stephen M.  Shibasaki  K.  Nakajima  H. 《Solar physics》1998,183(2):389-405
We present a comprehensive analysis of the 17 August 1994 flare, the first flare imaged at millimeter (86 GHz) wavelengths. The temporal evolution of this flare displays a prominent impulsive peak shortly after 01:02 UT, observed in hard X-rays and at microwave frequencies, followed by a gradual decay phase. The gradual phase was also detected at 86 GHz. Soft X-ray images show a compact emitting region (20), which is resolved into two sources: a footpoint and a loop top source. Nonthermal emissions at microwave and hard X-ray wavelengths are analyzed and the accelerated electron spectrum is calculated. This energy spectrum derived from the microwave and hard X-ray observations suggests that these emissions were created by the same electron population. The millimeter emission during the gradual phase is thermal bremsstrahlung originating mostly from the top of the flaring loop. The soft X-rays and the millimeter flux density from the footpoint source are only consistent with the presence of a multi-temperature plasma at the footpoint.  相似文献   

18.
In the past, both magnetospheric substorms and solar flares have almost exclusively been discussed in terms of explosive magnetic reconnection. Such a model may conceptually be illustrated by the so-called tippy-bucket model, which causes sudden unloading processes, namely a sudden (catastrophic, stochastic, and unpredictable) conversion of stored magnetic energy. However, recent observations indicate that magnetospheric substorms can be understood as a result of a directly driven process which can conceptually be illustrated by the pitcher model in which the output rate varies in harmony with the input rate. It is also possible that solar flare phenomena are directly driven by a photospheric dynamo. Thus, explosive magnetic reconnection may simply be an unworkable hypothesis and may not be a puzzle to be solved as the primary energy supply process for magnetospheric substorms and solar flares.  相似文献   

19.
Peter A. Sturrock 《Solar physics》1989,121(1-2):387-397
This article focuses on two problems involved in the development of models of solar flares. The first concerns the mechanism responsible for eruptions, such as erupting filaments or coronal mass ejections, that are sometimes involved in the flare process. The concept of loss of equilibrium is considered and it is argued that the concept typically arises in thought-experiments that do not represent acceptable physical behavior of the solar atmosphere. It is proposed instead that such eruptions are probably caused by an instability of a plasma configuration. The instability may be purely MHD, or it may combine both MHD and resistive processes. The second problem concerns the mechanism of energy release of the impulsive (or gradual) phase. It is proposed that this phase of flares may be due to current interruption, as was originally proposed by Alfvén and Carlqvist. However, in order for this process to be viable, it seems necessary to change one's ideas about the heating and structure of the corona in ways that are outlined briefly.  相似文献   

20.
We examined five flares, observed by the Hard X-Ray Imaging Spectrometer aboard the Solar Maximum Mission, for the occurrence of coronal explosions and found that these occur only if (a) the flare shows distinct single impulsive hard X-ray bursts and (b) it shows upward (convective) motions during the initial part of the impulsive phase. Coronal explosions are therefore explained as a manifestation of plasma streaming laterally out of the flare kernel(s). There is some evidence that streaming occurs into a number of cylindrical fluxtubes which spread over a larger area, thus supporting the spaghetti-bundle model for the flaring region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号