首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We give the results of photographic observations of the recurrent nova WZ Sge during its 1978 outburst, between December 5 and 25, using the double astrograph of Beijing Observatory. We discuss the observed properties and calculate the total energy released during the outburst to be about 1.07 (+40) erg. We estimate that the next outburst will occur around the year 2011.  相似文献   

2.
A classical nova model was evolved through a complete cycle, i.e. accretion leading to cutburst, mass loss and again accretion, ending in another outburst, by means of an implicit Lagrangian hydrodynamic code, which included diffusion (concentration, pressure and thermal terms), as well as an extensive nuclear reactions network between 28 isotopes of C, N, O, F, Ne, Na, Mg and Al. The initial model was a 1.25 M C–O white dwarf (WD) and the accretion rate assumed was 10–11 M/yr. For more details of this calculation, see Prialnik (1986).The accreted matter was assumed to have normal composition (X=0.70, Z=0.03). Nevertheless, due to diffusion and convection, a significant amount of core material was mixed into the accreted matter, raising Z by a factor of 10. The model's evolution closely resembled that of a fast nova eruption, with a peak bolometric luminosity of 2.9×105 L, a time of decline by 3m of 25 days, an ejected mass of 6.5×10–6 M and a maximum velocity of 3800 km/sec.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables, Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

3.
X-ray spectral data of the source during 1982–1987 suggest that the observed low state of the source intensity could have arisen due to additional absorption of the X-ray flux by material surrounding the X-ray source, which could have come from the companion star during a nova outburst. The accretion models can not explain the rapid spin-down of the pulsar. If the spin-down is caused by the nova outburst, it is suggested that period slow down can occur due to mechanical braking of the pulsar generated by the increased moment of inertia.  相似文献   

4.
Classical nova outbursts occur in binary systems containing a white dwarf accretor and a Roche-lobe-filling main-sequence star. The outburst is due to a thermonuclear runaway in the accreted material on the surface of the white dwarf, and results in the ejection of up to 10–4 M of material at velocities of several hundred to a few thousand kilometres per second. There is now strong evidence that the mass ejection takes place via a wind with secularly increasing velocity. The fast ejecta catches up with slower moving material ejected earlier in the outburst, forming a layer of shock-heated gas which gives rise to a short burst of soft X-ray emission. This emission was observed in V838 Her (Nova Herculis 1991), and was succesfully accounted for by the interacting winds model. In this paper, we present 2.5-D numerical hydrodynamics calculations of interacting winds in novae which consider the effects of the binary system on shaping the mass-loss, and show that many of the features seen in the optical shells of novae many years after outburst can be accounted for.This author is supported by a PPARC research assistantship  相似文献   

5.
The 2006 outburst of GK Persei differed significantly at optical and ultraviolet (UV) wavelengths from typical outbursts of this object. We present multiwavelength (X-ray, UV and optical) Swift and AAVSO data, giving unprecedented broad-band coverage of the outburst, allowing us to follow the evolution of the longer-than-normal 2006 outburst across these wavelengths. In the optical and UV we see a triple-peaked morphology with maximum brightness ∼1.5 mag lower than in previous years. In contrast, the peak hard X-ray flux is the same as in previous outbursts. We resolve this dichotomy by demonstrating that the hard X-ray flux only accounts for a small fraction of the total energy liberated during accretion, and interpret the optical/UV outburst profile as arising from a series of heating and cooling waves traversing the disc, caused by its variable density profile.  相似文献   

6.
We have computed a spherically symmetric model for the interaction of matter ejected during the outburst of a classical nova with the stellar wind from its optical component. This model is used to describe the intense X-ray outburst (the peak 3–20 keV flux was ~2 Crab) of the binary system CI Camelopardalis in 1998. According to our model, the stellar wind from the optical component heated by a strong shock wave produced when matter is ejected from the white dwarf as the result of a thermonuclear explosion on its surface is the emission source in the standard X-ray band. Comparison of the calculated and observed time dependences of the mean radiation temperature and luminosity of the binary system during its outburst has yielded very important characteristics of the explosion. We have been able to measure the velocity of the ejected matter immediately after the onset of the explosion for the first time: it follows from our model that the ejected matter had a velocity of ~2700 km s?1 even on 0.1–0.5 day after the outburst onset and it flew with such a velocity for the first 1–1.5 day under an external force, possibly, the radiation pressure from the white dwarf. Subsequently, the matter probably became transparent and began to decelerate. The time dependence of the mean radiation temperature at late expansion phases has allowed us to estimate the mass of the ejected matter, ~10?7–10?6 M . The mass loss rate in the stellar wind required to explain the observed peak luminosity of the binary system during its outburst has been estimated to be \(\dot M\) ~ (1 ? 2) × 10?6 M yr?1.  相似文献   

7.
A review of light curves of known x-ray novae made it possible to identify criteria by which x-ray nova candidates were selected among old novae: amplitude of optical outburst 7–10 m, shape of light curve during the outburst with a temporary fading by 2–3m lasting up to four days and an abrupt final fading from the 6m level (relative to the quiet state). We identified LS And, AL Com, V592 Her, and HV Vir as x-ray nova candidates. Recurrent outbursts should be expected for the first and third stars. Less reliable candidates are V341 Nor, V787 Sgr, and V719 Sco. A possible recurrent nova candidate may be V1330 Cyg. Translated from Astrofizika, Vol. 42, No. 3, pp. 359–364, July–September, 1999.  相似文献   

8.
9.
We study star-formation-inducing mechanisms in galaxies through multiwavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in Paper I. Our main goal is to test how star-formation-inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters.   Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the solar value. The colours can generally be explained as a combination of two different stellar populations: a young (3–20 Myr) metal-poor population which represents the stars currently forming presumably in a starburst, and an older (0.1–1 Gyr) population of previous stellar generations. There is evidence that the older stellar population was also formed in a starburst. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods.   No significant correlation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of atomic hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies, suggesting that tidal interactions are not significant in triggering star formation in cluster dwarf galaxies.  相似文献   

10.
During the scanning observations of the Galactic center region in late August–September 2016 we detected a new (third) outburst of the historical X-ray nova GRS 1739-278, a presumed black hole in a low-mass X-ray binary. This was reported in the Astronomer’s Telegrams (Mereminskiy et al. 2016). In this paper we present the results of INTEGRAL and Swift observations of the outburst development. According to these observations, the flux from the source in the hard X-ray band (20–60 keV) rose from ~11 (September 3) to ~30 mCrab (September 14), was at the attained level for ~8 days, and then returned to ~15 mCrab. The spectrum of the source taken at its peak brightness in the energy range 0.5–150 keV could be fitted by a single power law with a photon index of 1.86 ± 0.07 distorted only by photoabsorption corresponding to the hydrogen column density log10 (N H) = 22.37 under the assumption of a solar abundance. This means that the source at this time was in the low/hard state. Infrared observations with the RTT-150 telescope near the X-ray brightness peak of the source revealed no emission down to \(22_ \cdot ^m 0\) (in the r’ band) and \(20_ \cdot ^m 9\) (in the i’ band). At the time of writing the paper we do not yet know whether this outburst ended or only its initial stage was observed. If it ended, then based on the light curve and spectra, we can state that it was a “failed” outburst, i.e., the amount of accreted matter in this episode was insufficient to reach the high or very high state with a soft blackbody component in the spectrum characteristic of developed outbursts.  相似文献   

11.
We have constructed the light curves of the symbiotic nova V1016 Cyg for the period 1971–2007 in a homogeneous photometric system close to UBV using our observations with the Zeiss-600 SAI telescope. Based on the observational data obtained with the 125-cm SAI telescope in 2000–2007, we have performed absolute spectrophotometry of the star in the range λ3700–9300 Å. The derived line intensities are compared with the data of other authors in the preceding years (1965–1988). The behavior of nebular lines showed the variations in electron density and, probably, electron temperature in the [OIII] emission region caused by a variable stellar wind from the hot component. All the available observations of the star confirm the theoretical conclusion that the nova-like outburst of V1016 Cyg was produced by a thermonuclear flash in the accreted envelope of a white dwarf.  相似文献   

12.
We present the analysis of spectrograms obtained during quiescence and during an ordinary outburst of the SU UMa type dwarf nova WX Hyi (ESO 3.6m telescope, B&C spectrograph with Image Disector Scanner, 171 Åmm–1, range 4000–7000 Å, time resolution 6min.). The radial velocities of these spectra have been discussed by Schoembs and Vogt (1981) who also derived the orbital elements of WX Hyi. The phasesmax refer to these elements. All velocities discussed here are with respect to the white dwarf, not to the center of mass of the binary system.Inquiescent state we did not find significant radial velocity variations. The equivalent widths W of the He I emission lines revealed periodic variations with an amplitude of 30%, maximal values of W were observed atmax=0.0...0.2. In contrast, the equivalent widths of the Balmer lines were not variable.Duringoutburst we found periodic radial velocity variations of the emission peak of H, H and He I 5875 with an amplitude of100 km s–1,max0.5. Also the broad Balmer absorption lines revealed periodic radial velocity variations, with a similar amplitude (max=0.3...0.5). The equivalent width of the H central emission peak varies with an amplitude of30%,max0.85. No variations of the equivalent width of the Balmer absorption lines were found.The outburst observations suggest that the preceeding part of the disc is brighter than the following one (in orbital motion). This is probably due to heating of the preceeding part by collisions with circumbinary matter, which seems to have an enhanced density in outburst as compared to the quiescent state. The emission lines are formed in outer layers or in a halo around the disc. The equivalent width variations can be interpreted in terms of interactions between this halo and the optically thick part of the disc.A more detailed discussion of the data is being published elsewhere.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986  相似文献   

13.
We present near-infrared photospectroscopy in the H and K bands of the 2006 outburst of the recurrent nova RS Ophiuchi. The observations cover the period between 1 and 94 d after the eruption. The near-infrared light curve is presented. An extensive set of spectra is presented, lines identified and the general characteristics of the spectra discussed. Analysis of the H  i line profiles shows the presence of broad wings on both flanks of a strong central component indicating the presence of a bipolar velocity flow in the ejecta. Such a flow is kinematically consistent with the bipolar structure that the object displays in high-resolution spatial images. We discuss the behaviour and origin of the Fe  ii lines at 1.6872 and 1.7414 μm that are prominently seen throughout the span of the observations. It is examined and shown that Lyman α and Lyman continuum fluorescence are viable mechanisms to excite these lines. We draw upon the result, that collisional excitation can also contribute in exciting and significantly enhancing the strength of these Fe  ii lines, to propose that these lines originate from a site of high particle density. Such a likely site could be the high-density, low-temperature contact surface that should exists in the shock front in between the shocked ejecta and red giant wind. Recombination analysis of the H  i lines indicates deviations from case B conditions during most of the span of our observations indicating optical depth effects. It appears likely that the breakout of the shock front had not yet occurred till the end of our observations. An analysis is made of the temporal evolution of the [Si  vi ] 1.9641 μm coronal line and another coronal line at 2.0894 μm which is attributed to [Mn  xiv ]. Assuming collisional effects to dominate in the hot coronal gas, estimates are made of the ion temperature in the gas.  相似文献   

14.
15.
We present the results of soft X‐ray studies of the classical nova V2491 Cygni using the Suzaku observatory. On day 29 after outburst, a soft X‐ray component with a peak at ∼0.5 keV has appeared, which is tantalising evidence for the beginning of the super‐soft X‐ray emission phase. We show that an absorbed blackbody model can describe the observed spectra, yielding a temperature of 57 eV, neutral hydrogen column density of 2 × 1021 cm–2, and a bolometric luminosity of ∼1036 erg s–1. However, at the same time, we also found a good fit with an absorbed thin‐thermal plasma model, yielding a temperature of 0.1 keV, neutral hydrogen column density of 4 × 1021 cm–2, and a volume emission measure of ∼1058 cm–3. Owing to low spectral resolution and low signal‐to‐noise ratio below 0.6 keV, the statistical parameter uncertainties are large, but the ambiguity of the two very different models demonstrates that the systematic errors are the main point of concern. The thin‐thermal plasma model implies that the soft emission originates from optically thin ejecta, while the blackbody model suggests that we are seeing optically thick emission from the white dwarf (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Results of quasi-simultaneous SWIFT and RTT-150 observations for the X-ray nova SWIFT J174510.8-262411 in May–June 2013 at the decaying phase of its outburst are presented. It is shown that the nova spectrum can be fitted in a very wide energy range (from the infrared z and i bands to hard X-rays) by a single power law attenuated due to absorption but without any traces of the presence of a soft (blackbody) component. The presence of such a component is suggested by the generally accepted models of disk accretion onto a black hole in a binary system. The observation of a single power-law spectrum may imply that synchrotron radiation from the source’s relativistic jets makes a major contribution to its flux or that the accretion disk is everywhere hot, optically thin, and radiates nonthermally.  相似文献   

17.
On the basis of photoelectric observations performed at the Teramo Observatory, the V lightcurve of Nova Cygni 1975 from August 1975 to July 1977 is given. Since three days after maximum thereafter, the decline pursued smoothly according the law V = 2.5 + 3.9 lg t, and 680 days after maximum the star had weakened by 12.5 mag. The well-known shortperiod light variation, which at the time of the early decline showed an amplitude smaller than 0.2 mag in V light, on December 13, 1976, displayed an amplitude as high as 0.5 mag.  相似文献   

18.
19.
The initial discovery of soft X-rays from Nova Muscae 1983 was followed by eight additional observations of the three brightest novae whose outburst stage coincided with the lifetime ofEXOSAT satellite; namely three more observations of Nova Muscae 1983, three observations of Nova Vulpeculae 1984#1 (PW Vul), and two observations of Nova Vulpeculae 1984#2. Through these observations we sampled the soft X-ray light curve of classical novae from optical maximum to 900 days after. The observations seem best explained by the constant bolometric luminosity model of a hot white dwarf remnant. Although the measurements suffer from limited statistics, very broad energy bandpass, and incomplete sampling of any single nova, their constraints on the theories of nova outburst are significant. One constraint is that the lifetime of the white dwarf remnant in Nova Muscae 1983 is 2 to 3 years, which leads to the conclusion that the burned envelope massM burn should be of the order of . The second constraint is that the maximum temperature, of the white dwarf remnant should approximately be within 200 000 K to 400 000 K. We estimate that a white dwarf remnant evolving like the central star of a planetary nebula, with core mass of 0.8 to 0.9M , core luminosity of 2×104 L , and envelope mass of 10–6 M , can explain the general characteristics of the X-ray measurements for Nova Muscae 1983. In order to have 1.1M core mass, estimated from the early observations of bolometric luminosity in the UV to infrared range, a wind withM5×10–7 M yr–1 appears to be necessary. The few observations of Nova Vulpeculae 1984 #1 and Nova Vulpeculae 1984#2, during the first year after outburst, give a risetime and intensity that is consistent with a constant bolometric luminosity model.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F. R. G., 16–19 June, 1986.  相似文献   

20.
The recurrent nova T CrB has entered in 2015 a phase of unprecedented high activity. To trace something equivalent, it is necessary to go back to 1938, before the last nova eruption in 1946. The 2015 super-active state is characterized by: a large increase in the mean brightness (ΔB=0.72 mag over the underlying secular trend), vanishing of the orbital modulation from the B-band lightcurve, and appearance of strong and high ionization emission lines, on top of a nebular continuum that overwhelms at optical wavelengths the absorption spectrum of the M giant. Among the emission lines, HeII 4686 attains a flux in excess of Hγ, the full set of OIII and NIII lines involved in the Bowen fluorescence mechanism are strong and varying in intensity in phase with HeII 4686, and OIV and [NeV] are present. A large increase in the radiation output from the hot source is responsible for a large expansion in the ionized fraction of the M giant wind. The wind is completely ionized in the direction to the observer. A high electron density is supported by the weakness of forbidden lines and by the large amplitude and short time scale of the reprocessing by the nebular material of the highly variable photo-ionization input from the hot source. During the super-active state the nebula is varying to and from ionization-bounded and density-bounded conditions, and the augmented irradiation of the cool giant has changed the spectral type of its side facing the WD from M3III to M2III, i.e. an increase of ∼80 K in effective temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号