首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vanlommel  P.  Čadež  V.M. 《Solar physics》2000,196(2):227-244
We study high-order acoustic modes which reside in the outer layers of the solar interior. Magnetic field effects are not taken into account in this paper as we wish first to filter out how the modal frequencies depend on physical characteristics of a particular model structure of the Sun. In particular, we are interested in how the modal frequencies of solar global oscillations depend on the thickness of the convection layer and on the temperature gradient of the solar interior below. The model we use consists of three planar layers: an isothermal atmosphere, while the convection layer and the interior have temperature gradients that are adiabatic and sub-adiabatic, respectively. The presence of a convection layer with a finite thickness brings in additional modes while the variations in temperature gradient of the interior cause shifts in eigenfrequencies that are more pronounced for the p modes than for the g modes. These shifts can easily be of the order of several hundreds of Hz, which is much larger than the observational accuracy.  相似文献   

2.
The physics of solar and stellar oscillations determines their observable properties: frequencies, amplitudes, lifetimes, line asymmetries and phase relations. In the solar case these quantities have been measured, often with high precision, and much has been learned about the properties of the solar interior, and the properties of the oscillations. With recent advances in observational techniques, such seismic investigations are now being extended to solar-like oscillations in distant stars. I provide a brief overview of the basic properties of stellar oscillations, and of the information about stellar properties that may be inferred from them, concentrating mostly on the low-degree modes for which information may be expected for distant stars. In addition, I consider the current state of investigations of solar-like oscillations in other stars, and the prospects for an improved understanding of the physics of such oscillations.  相似文献   

3.
Gavryusev  V.G.  Gavryuseva  E.A. 《Solar physics》1999,189(2):261-270
We compare the line profiles and frequencies of low =0, 1, 2 acoustic oscillations seen in observations in velocity (by the GOLF and GONG experiments) and in intensity (LOI instrument). Our study indicates that the systematic shift between the frequencies of low- pmodes in intensity and in velocity measurements recently discovered by Toutain and co-workers is merely an artifact of their reduction techniques. The results obtained agree perfectly with the theoretical expectation that solar oscillations are the global eigenmodes simultaneously visible in velocity and intensity with the frequencies and line profiles coinciding within the error bars.  相似文献   

4.
The influence of a constant coronal magnetic field on solar global oscillations is investigated for a simple planar equilibrium model. The model consists of an atmosphere with a constant horizontal magnetic field and a constant sound speed, on top of an adiabatic interior having a linear temperature profile. The focus is on the possible resonant coupling of global solar oscillation modes to local slow continuum modes of the atmosphere and the consequent damping of the global oscillations. In order to avoid Alfvén resonances, the analysis is restricted to propagation parallel to the coronal magnetic field. Parallel propagating oscillation modes in this equilibrium model have already been studied by Evans and Roberts (1990). However, they avoided the resonant coupling to slow continuum modes by a special choice of the temperature profile. The physical process of resonant absorption of the acoustic modes with frequency in the cusp continuum is mathematically completely described by the ideal MHD differential equations which for this particular equilibrium model reduce to the hypergeometric differential equation. The resonant layer is correctly dealt with in ideal MHD by a proper treatment of the logarithmical branch cut of the hypergeometric function. The result of the resonant coupling with cusp waves is twofold. The eigenfrequencies become complex and the real part of the frequency is shifted. The shift of the real part of the frequency is not negligible and within the limit of observational accuracy. This indicates that resonant interactions should definitely be taken into account when calculating the frequencies of the global solar oscillations.  相似文献   

5.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

6.
Helioseismology     
The sun being the nearest star, seismic observations with high spatial resolution are possible, thus providing accurate measurement of frequencies of about half million modes of solar oscillations covering a wide range of degree. With these data helioseismology has enabled us to study the solar interior in sufficient detail to infer the large-scale structure and rotation of the solar interior. With the availability of high quality helioseismic data over a good fraction of a solar cycle it is also possible to study temporal variations in solar structure and dynamics. Some of these problems and recent results will be discussed.  相似文献   

7.
The influence of turbulence on the frequencies of free acoustic modes in convection zones is considered. The frequencies are modified via the speed of sound by the turbulence-induced alterations of the effective pressure: (i) by the correlated fluctuations of temperature and density and (ii) the pressure part of the Reynolds stress. The two effects shift the frequency of low l p-modes in opposite directions. In addition, the correlation of the density fluctuations with the random velocity — the eddy-mass flow — is also relevant. It is, in a steady state, balanced by a vertical mean velocity. The balance results in a rather small net effect completely disappearing for highly nonradial oscillations. Both effects of the density fluctuations produce a redshift of the low l p-mode frequencies. The Reynolds stress, however, makes a blueshift of the frequencies relative to that computed for a laminar gas. This effect dominates for subsonic turbulences. The applied second-order correlation-approximation, however, only holds for the lowest frequencies, where the KORONAS (solar minimum) data are indicating a blueshift. Of particular importance for the present concept is the expected cycle-variations of the lineshifts, i.e. the consideration of the magnetic modification of the various contributions. Observations may show whether the suggested modifications of the solar oscillation theory are correct.  相似文献   

8.
Hindman  Bradley  Haber  Deborah  Toomre  Juri  Bogart  Rick 《Solar physics》2000,192(1-2):363-372
Using data from SOI-MDI (Haber et al., 2000), we compute the local frequencies of high-degree p modes and f modes. The frequencies are obtained through ring-diagram mode fitting. The Dense-Pack data set consists of a mosaic of 189 overlapping tiles, each tracked separately at the surface rotation rate over 1664-min time intervals during the Dynamics Programs. Each tile is 16° square and the tile centers are separated by 7.5° in latitude and longitude. For each sampling day and for each tile, we have computed the frequency shift measured relative to the temporal and spatial average of the entire set of frequencies. The motion of active regions as they rotate across the solar disk is vividly traced by these measurements. Active regions appear as locations of large positive frequency shifts. If the shifts are averaged over the solar disk and are scaled down to the appropriate wave number regime, the magnitude and frequency dependence of the shifts are consistent with the measured changes in global oscillation frequencies that occur over the solar cycle. As with the frequency shifts of low-degree global oscillations, the frequency dependence of the shifts indicates that the physical phenomena inducing the shifts is confined to the surface layers of the Sun.  相似文献   

9.
Solar five-minute oscillations have been detected in the power spectra of two six-day time intervals from soft X-ray measurements of the Sun observed as a star using the Extreme Ultraviolet Spectrophotometer (ESP) onboard the Solar Dynamics Observatory (SDO)/Extreme Ultraviolet Variability Experiment (EVE). The frequencies of the largest amplitude peaks were found to match the known low-degree (?=0?–?3) modes of global acoustic oscillations within 3.7 μHz and can be explained by a leakage of the global modes into the corona. Due to the strong variability of the solar atmosphere between the photosphere and the corona, the frequencies and amplitudes of the coronal oscillations are likely to vary with time. We investigated the variations in the power spectra for individual days and their association with changes of solar activity, e.g. with the mean level of the EUV irradiance, and its short-term variations caused by evolving active regions. Our analysis of samples of one-day oscillation power spectra for a 49-day period of low and intermediate solar activity showed little correlation with the mean EUV irradiance and the short-term variability of the irradiance. We suggest that some other changes in the solar atmosphere, e.g., magnetic fields and/or inter-network configuration may affect the mode leakage to the corona.  相似文献   

10.
The interior of the Sun is not directly observable to us. Nevertheless, it is possible to infer the physical conditions prevailing in the solar interior with the help of theoretical models coupled with observational input provided by measured frequencies of solar oscillations. The frequencies of these solar oscillations depend on the internal structure and dynamics of the Sun and from the knowledge of these frequencies it is possible to infer the internal structure as well as the large scale flows inside the Sun, in the same way as the observations of seismic waves on the surface of Earth help us in the study of its interior. With the accumulation of seismic data over the last six years it has also become possible to study temporal variations in the solar interior. Some of these seismic inferences would be described.  相似文献   

11.
Solar gravity modes (or g modes)—oscillations of the solar interior on which buoyancy acts as the restoring force—have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well-observed acoustic modes (or p modes). The relative high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this article, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made—from both data and data-analysis perspectives—to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.  相似文献   

12.
We applied special data-processing algorithms to the study of long-period oscillations of the magnetic-field strength and the line-of-sight velocity in sunspots. The oscillations were investigated with two independent groups of data. First, we used an eight-hour-long series of solar spectrograms, obtained with the solar telescope at the Pulkovo Observatory. We simultaneously measured Doppler shifts of six spectral lines, formed at different heights in the atmosphere. Second, we had a long time series of full-disk magnetograms (10 – 34 hour) from SOHO/MDI for the line-of-sight magnetic-field component. Both ground- and space-based observations revealed long-period modes of oscillations (40 – 45, 60 – 80, and 160 – 180 minutes) in the power spectrum of the sunspots and surrounding magnetic structures. With the SOHO/MDI data, one can study the longer periodicities. We obtained two new significant periods (> 3σ) in the power spectra of sunspots: around 250 and 480 minutes. The power of the oscillations in the lower frequencies is always higher than in the higher ones. The amplitude of the long-period magnetic-field modes shows magnitudes of about 200 – 250 G. The amplitude of the line-of-sight velocity periodicities is about 60 – 110 m s−1. The absence of low-frequency oscillations in the telluric line proves their solar nature. Moreover, the absence of low-frequency oscillations of the line-of-sight velocity in the quiet photosphere (free of magnetic elements) proves their direct connection to magnetic structures. Long-period modes of oscillation observed in magnetic elements surrounding the sunspot are spread over the meso-granulation scales (10″ – 12″), while the sunspot itself oscillates as a whole. The amplitude of the long-period mode of the line-of-sight velocity in a sunspot decreases rapidly with height: these oscillations are clearly visible in the spectral lines originating at heights of approximately 200 km and fade away in lines originating at 500 km. We found a new interesting property: the low-frequency oscillations of a sunspot are strongly reduced when there is a steady temporal trend (strengthening or weakening) of the sunspot’s magnetic field. Another important result is that the frequency of long-period oscillations evidently depends on the sunspot’s magnetic-field strength.  相似文献   

13.
日震学是太阳物理的一个前沿分支学科,是根据太阳振动的观测来研究太阳的内部结构与运动的一种方法学。太阳5min振动频率的理论计算和实测之间存在的显著偏差和振动模的激发问题一直是困扰日震学的两大难题,经过多年的研究仍然没有解决。然而太阳的表面层内绝热假设条件与真实情况有很大的偏差,我们认为绝大多数标准太阳模型的P模频率计算忽略了非绝热效应对频率的影响,忽略了振动的激发和衰减机制以及缺乏振动与对流湍流相互作用的知识。因此,我们必须发展非绝热理论来处理太阳5min的振动问题  相似文献   

14.
The presence of a magnetic field in a neutron star interior results in a dynamical coupling between the fluid core and the elastic crust. We consider a simple toy-model where this coupling is taken into account and compute the system’s mode oscillations. Our results suggest that the notion of pure torsional crust modes is not useful for the coupled system, instead all modes excite Alfvén waves in the core. However, we also show that among a rich spectrum of global MHD modes the ones most likely to be excited by a fractured crust are those for which the crust and the core oscillate in concert. For our simple model, the frequencies of these modes are similar to the “pure crustal” frequencies. We advocate the significant implications of these results for the attempted theoretical interpretation of QPOs during magnetar flares in terms of neutron star oscillations.   相似文献   

15.
The spatio-temporal dynamics of the solar photosphere are studied by performing a proper orthogonal decomposition (POD) of line-of-sight velocity fields computed from high-resolution data coming from the SOHO/MDI instrument. Using this technique, we are able to identify and characterize the different dynamical regimes acting in the system. All of the POD modes are characterized by two well-separated peaks in the frequency spectra. In particular, low-frequency oscillations, with frequencies in the range 20?–?130 μHz, dominate the most energetic POD modes (excluding solar rotation) and are characterized by spatial patterns with typical scales of about 3 Mm. Patterns with larger typical scales, of about 10 Mm, are dominated by p-mode oscillations at frequencies of about 3000 μHz. The p-mode properties found by POD are in agreement with those obtained with the classical Fourier analysis. The spatial properties of high-energy POD modes suggest the presence of a strong coupling between low-frequency modes and turbulent convection.  相似文献   

16.
There has for some time been evidence of variability in radiochemical solar neutrino measurements, but this evidence has seemed suspect since the Cerenkov experiments have not shown similar evidence of variability. The present reanalysis of Super-Kamiokande data shows strong evidence of r-mode oscillations. The frequencies of these oscillations correspond to a region with a sidereal rotation rate of 13.97 year−1. This estimate is incompatible with the rotation rate in the convection zone but is compatible with current estimates of the rotation rate in the radiative zone. The excitation of r modes in the radiative zone may be due to a velocity field originating in or related to the nuclear-burning core.  相似文献   

17.
The pulsation of the solar surface is caused by acoustic waves traveling in the solar interior. Thorough analyses of observational data indicate that these f and p helioseismic oscillation modes are not bounced back completely at the surface but they partially penetrate into the atmosphere. Atmospheric effects and their possible observational application are investigated in one‐dimensional magnetohydrodynamic models. It is found that f and p mode frequencies are shifted of the order of μHz due to the presence of an atmospheric magnetic field. This shift varies with the direction of the wave propagation.Resonant coupling of global helioseismic modes to local Alfvén and slow waves reduce the life time of the global modes. The resulting line width of the frequency line is of the order of nHz, and it also varies with propagation angle. These features enable us to use helioseismic observations in magnetic diagnostics of the lower atmosphere. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A scheme, based on the expansion of solar oscillations into spherical harmonics, for the identification of sectorial modes of intermediate degree in the interval 3 < l < 20 is presented. In this range, the frequencies of modes with similar quantum numbers can be very close together, so that a careful spectral analysis of their spatial pattern is needed to effectively separate these modes. The filtering scheme proposed is intended to operate on quantized images of the Sun and reaches satisfactory resolving power by a two-step procedure, namely a straightforward filtering followed by the resolution of a system of linear equations. The results obtained are also shown to be independent on the ecliptic longitude of the Earth.  相似文献   

19.
The measured properties of stellar oscillations can provide powerful constraints on the internal structure and composition of stars. To begin this process, oscillation frequencies must be extracted from the observational data, typically time series of the star's brightness or radial velocity. In this paper, a probabilistic model is introduced for inferring the frequencies and amplitudes of stellar oscillation modes from data, assuming that there is some periodic character to the oscillations, but that they may not be exactly sinusoidal. Effectively, we fit damped oscillations to the time series, and hence the mode lifetime is also recovered. While this approach is computationally demanding for large time series (>1500 points), it should at least allow improved analysis of observations of solar-like oscillations in subgiant and red giant stars, as well as sparse observations of semiregular stars, where the number of points in the time series is often low. The method is demonstrated on simulated data and then applied to radial velocity measurements of the red giant star  ξ Hydrae  , yielding a mode lifetime between 0.41 and 2.65 d with 95 per cent posterior probability. The large frequency separation between modes is ambiguous, however we argue that the most plausible value is 6.3 μHz, based on the radial velocity data and the star's position in the Hertzsprung–Russell diagram.  相似文献   

20.
Summary Accurate measurements of observed frequencies of solar oscillations are providing a wealth of data on the properties of the solar interior. The frequencies depend on solar structure, and on the properties of the plasma in the Sun. Here we consider in particular the dependence on the thermodynamic state. From an analysis of the equations of stellar structure, and the relevant aspects of the properties of the oscillations, we argue that in the convection zone one can isolate information about the equation of state which is relatively unaffected by other uncertainties in the physics of the solar interior. We review the different treatments that have been used to describe the thermodynamics of stellar plasmas. Through application of several of these to the computation of models of the solar envelope we demonstrate that the sensitivity of the observed frequencies is in fact sufficient to distinguish even quite subtle features of the physics of solar matter. This opens up the possibility of using the Sun as a laboratory for statistical mechanics, under conditions that are out of reach in a terrestrial laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号