首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We complete by this part II the establishment of a second order secular Jupiter-Saturn theory. This is achieved by taking into consideration the influence of the indirect part of the planetary disturbing function, and expressing the second order secular Hamiltonian in terms of Poincaré's canonical variables.  相似文献   

2.
We calculate in this paper the secular and critical terms arising from the principal part of the classical planetary Hamiltonian. This is the first step to establish a third order canonical planetary theory of Uranus-Neptune through the Hori-Lie technique. We truncate our expansions at the second degree of eccentricity-inclination. Our planetary theory is expressed in terms of the canonical variables of H. Poincaré.  相似文献   

3.
We extend the construction of the Jupiter-Saturn theory to include all the terms up to the seventh order in the masses. The Hori-Lie transformation technique is employed. The Jacobian coordinates are adopted and the theory is expressed in terms of the canonical non-singular variables of H. Poincaré.  相似文献   

4.
All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described.  相似文献   

5.
We generalize our results of a second order Jupiter-Saturn planetary theory to be applicable for the case of the four major planets.We use the Von Zeipel method and we neglect powers higher than the third with respect to the eccentricities and sines of the inclinations in our expansions. We consider the critical terms as the only periodic terms.  相似文献   

6.
We construct a fifth-order with respect to masses Jupiter-Saturn secular theory by Hori-Lie canonical technique. The J-S Hamiltonian includes both parts of the perturbing function. The influence of the 2:5 critical terms is taken into consideration. The Jacobi-Radau system of origins is adopted and the theory is expressed in terms of the Poincaré canonical variables.  相似文献   

7.
By use of a new canonical transformation procedure, a third-order intermediary for planetary motion is developed. The intermediary contains all contributions that arise from the assumption of circular, coplanar orbits for the disturbing masses. The results are expressible in terms of elliptic integrals of the first, second, and third kinds.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

8.
In this part we calculate the secular and critical terms arising from the indirect part of the classical planetary Hamiltonian for Uranus and Neptune. We neglect in our expansions powers higher than the second in the eccentricity-inclination. Our required results, are expressed in terms of Poincaré variables.  相似文献   

9.
A second order atmospheric drag theory based on the usage of TD88 model is constructed. It is developed to the second order in terms of TD88 small parameters K n,j . The short periodic perturbations, of all orbital elements, are evaluated. The secular perturbations of the semi-major axis and of the eccentricity are obtained. The theory is applied to determine the lifetime of the satellites ROHINI (1980 62A), and to predict the lifetime of the microsatellite MIMOSA. The secular perturbations of the nodal longitude and of the argument of perigee due to the Earth’s gravity are taken into account up to the second order in Earth’s oblateness.  相似文献   

10.
Celestial Mechanics and Dynamical Astronomy - When on searches for a planetary theory valid over 1 million years, one can leave in the solution the short period terms whose amplitude are small, and...  相似文献   

11.
We present the secular theory of coplanar N -planet system, in the absence of mean motion resonances between the planets. This theory relies on the averaging of a perturbation to the two-body problem over the mean longitudes. We expand the perturbing Hamiltonian in Taylor series with respect to the ratios of semimajor axes which are considered as small parameters, without direct restrictions on the eccentricities. Next, we average out the resulting series term by term. This is possible thanks to a particular but in fact quite elementary choice of the integration variables. It makes it possible to avoid Fourier expansions of the perturbing Hamiltonian. We derive high-order expansions of the averaged secular Hamiltonian (here, up to the order of 24) with respect to the semimajor axes ratio. The resulting secular theory is a generalization of the octupole theory. The analytical results are compared with the results of numerical (i.e. practically exact) averaging. We estimate the convergence radius of the derived expansions, and we propose a further improvement of the algorithm. As a particular application of the method, we consider the secular dynamics of three-planet coplanar system. We focus on stationary solutions in the HD 37124 planetary system.  相似文献   

12.
The secular terms of the first-order planetary Hamiltonian is determined, by two methods, in terms of the variables of H. Poincaré, neglecting powers higher than the second in the eccentricity-inclination.  相似文献   

13.
The differential equations of planetary theory are solved analytically to first order for the two-dimensional case, using only Jacobian elliptic functions and the elliptic integrals of the first and second kind. This choice of functions leads to several new features potentially of importance for planetary theory. The first of these is that the solutions do not require the expansion of the reciprocal of the distance between two planets, even for those variables which depend on two angular arguments. A second result is that the solution is free from small divisors with the exception of two special resonances. In fact, not only are the solutions for resonant orbits free from small divisors, the perturbations for all variables are expressible in closed form. A subset of the resonant orbits maintains this form and in addition has the remarkable feature that the first order perturbations are purely periodic; they contain no secular terms. A solution for the 13 resonance case is given as an example.  相似文献   

14.
The accumulation of floccules into protoplanets is discussed, and it is pointed out that the simplifications which have been introduced into recent numerical models may result in the incorrect conclusion being reached.  相似文献   

15.
It is shown that the first-order general planetary theory, i.e. the theory without secular terms, developed in (Brumberg and Chapront, 1973) may be re-constructed and presented by the series in powers of the eccentricity and inclination variables with the closed form coefficients expressed in terms of elliptic functions. The intermediate solution of the zero degree in eccentricities and inclinations has been given explicitly with the aid of elliptic functions and the Hansen type quadratures with trigonometric function kernels. In determining the first and higher degree terms in eccentricities and inclinations one meets the Hansen type quadratures with elliptic function kernels. The secular evolution is described by the autonomous polynomial differential system.  相似文献   

16.
Based on a general planetary theory, the secular perturbations in the motion of the eight major planets (excluding Pluto) have been derived in polynomial form. The results are presented in the tables. The linear terms of second order with respect to the planetary masses and the nonlinear terms of first order up to the fifth (and partly seventh) degree with respect to eccentricities and inclinations were taken into account in the right-hand members of the secular system. Calculations were carried out by computer with the use of a system that performed analytic operations on power series with complex coefficients.
qA ( ). . ( ) . .
  相似文献   

17.
The construction of a third order J-S theory is presented. The Hori theory of planetary perturbations is employed. No Critical J-S terms due to the 2:5 commensurabilities and its multiples exist, when we take into account the periodic terms of order 0, 1, 2 with respect to the eccentricity- inclination. In this case the Lie series transformation degenerates and is meaningless. The J-S equations of motion for secular perturbations are solved when we neglect in our treatment, the Poisson terms of degree > 2 in the Poincaré canonical variables H u , K u , P u Q u (u = 1, 2). The Jacobi-Radau referential is adopted, and the theory is expressed in terms of the canonical variables of H. Poincaré.Now at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.  相似文献   

18.
The theory of the nutation for the rigid earth model at the second order   总被引:6,自引:0,他引:6  
We perform a complete reconstruction of the series of the nutation for a rigid Earth model with the use of the very accurate theories ELP2000 and VSOP82 for the motion of the Moon and the planets respectively, in such a way that all the individual contributions up to 0.005 mas should be taken. This implies the introduction of the planetary effects, of the influence of second-order parts of the potential of the Earth (J3, triaxiality), and some improvements due to an extension of the theory at the second order. All this increase notably the number of coefficients to be taken in account, and modifies also in a significant way the value of some of them.  相似文献   

19.
A new algorithm of order five is presented for the solution of the initial value problem where the system of ordinary differential equations is of second order and does not contain the first derivative.  相似文献   

20.
A.W. Harris 《Icarus》1977,31(1):168-174
An approximate analytical theory is derived for the rate of rotation acquired by a planet as it grows from the solar nebula. This theory was motivated by a numerical study by Giuli, and yields fair agreement with his results. The periods of planetary rotation obtained are proportional to planetesimal encounter velocity, and appear to suggest lower values of this velocity than are commonly assumed to have existed during planetary formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号