首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slope stability optimization, in the presence of a band of a weak layer between two strong layers, is accounted for in complicated geotechnical problems. Classical optimization algorithms are not suitable for solving such problems as they need a proper preliminary solution to converge to a valid result. Therefore, it is necessary to find a proper algorithm which is capable of finding the best global solution. Recently a lot of metaheuristic algorithms have been proposed which are able to evade local minima effectively. In this study four evolutionary algorithms, including well‐known and recent ones, such as genetic algorithm, differential evolution, evolutionary strategy and biogeography‐based optimization (BBO), are applied in slope stability analysis and their efficiencies are explored by three benchmark case studies. Result show BBO is the most efficient among these evolutionary algorithms and other proposed algorithms applied to this problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
针对地震勘探资料依赖线性优化方法进行波阻抗反演不易得到全局极值的问题,提出一种改进的粒子群优化算法-自适应粒子群优化算法进行波阻抗反演。自适应粒子群优化算法是以群智能优化理论为基础,通过3种可能移动方向的带权值组合进行全局寻优。该方法搜索速度较快,且具有较强的全局寻优能力。通过函数测试和波阻抗反演的应用,结果表明,自适应粒子群优化算法是一种适应能力较强的全局优化算法,用该方法进行波阻抗反演是可行有效的。   相似文献   

3.
基于粒子群优化的岩土工程反分析研究   总被引:11,自引:0,他引:11  
高玮 《岩土力学》2006,27(5):795-798
岩土工程优化反分析本质上看是一个典型的复杂非线性函数优化问题,采用全局优化算法是解决这个问题的理想途径,但由于优化反分析中多次调用正分析的特点使得整个算法的计算效率很低。为了提高优化反分析的计算效率,把一种计算效率更高的新型仿生算法--粒子群优化引入岩土工程反分析领域,提高反分析的计算效率。在此基础上,结合有限元数值分析技术,提出了一种新的岩土工程优化反分析算法--粒子群优化反分析。并通过一个简单算例验证了该法的有效性。  相似文献   

4.
The refraction microtremor method has been increasingly used as an appealing tool for investigating near surface S-wave structure. However, inversion, as a main stage in processing refraction microtremor data, is challenging for most local search methods due to its high nonlinearity. With the development of data optimization approaches, fast and easier techniques can be employed for processing geophysical data. Recently, particle swarm optimization algorithm has been used in many fields of studies. Use of particle swarm optimization in geophysical inverse problems is a relatively recent development which offers many advantages in dealing with the nonlinearity inherent in such applications. In this study, the reliability and efficiency of particle swarm optimization algorithm in the inversion of refraction microtremor data were investigated. A new framework was also proposed for the inversion of refraction microtremor Rayleigh wave dispersion curves. First, particle swarm optimization code in MATLAB was developed; then, in order to evaluate the efficiency and stability of proposed algorithm, two noise-free and two noise-corrupted synthetic datasets were inverted. Finally, particle swarm optimization inversion algorithm in refraction microtremor data was applied for geotechnical assessment in a case study in the area in city of Tabriz in northwest of Iran. The S-wave structure in the study area successfully delineated. Then, for evaluation, the estimated Vs profile was compared with downhole data available around of the considered area. It could be concluded that particle swarm optimization inversion algorithm is a suitable technique for inverting microtremor waves.  相似文献   

5.
贾善坡  伍国军  陈卫忠 《岩土力学》2011,32(Z2):598-603
岩土工程优化反分析是一个典型的复杂非线性函数优化问题,采用全局优化算法是解决这个问题的理想途径。针对常规反演方法应用于岩土工程参数反演时搜索效率低的缺点,结合粒子群算法和遗传算法的特点,充分考虑二者的互补性,提出一种效率较高的全局优化算法,以测点的实测值与计算值建立一种新的评价函数,将多目标优化问题转化为单目标优化问题,用混合罚函数法将约束问题变为无约束问题,构建了一种新的目标函数,将有限元程序ABAQUS作为一个模块嵌入到优化算法程序中,编制了有限元优化反演分析程序。并给出了应用实例验证了该法的有效性和实用性,是一种可行的参数反演方法,可应用于实际工程中复杂岩土介质初始应力场反演、渗流场以及位移反分析  相似文献   

6.
Recently, many heuristic global optimization algorithms have evolved with success for treating various types of problems. Majority of these algorithms have not been applied to slope stability problem for which the presence of soft band and convergence problem (discontinuity of the objective function) may create difficulties in the minimization process. In this paper, six heuristic optimization algorithms are applied to some simple and complicated slopes. The effectiveness and efficiency of these algorithms under different cases are evaluated, and it is found that no single method can outperform all the other methods under all cases, as different method has different behavior in different types of problems. For normal cases, the particle swarm method appears to be effective and efficient over various conditions, and this method is recommended to be used. For special cases where the objective function is highly discontinuous, the simulated annealing method appears to be a more stable solution.  相似文献   

7.
位移反分析的粒子群优化-高斯过程协同优化方法   总被引:2,自引:0,他引:2  
针对采用随机全局优化技术进行岩土工程位移反分析存在数值计算量大、效率低的问题,将粒子群优化算法与高斯过程机器学习技术相结合,提出了位移反分析的粒子群优化-高斯过程协同优化方法。该方法利用全局寻优性能优异的粒子群优化算法进行寻优的基础上,采用高斯过程机器学习模型不断地总结历史经验,预测包含全局最优解的最有前景区域,通过提高粒子群搜索效率并降低适应度评价次数,进而有效地降低位移反分析过程中的数值计算工作量。多种测试函数的数学验证和工程算例的研究结果表明该方法是可行的,与传统方法相比较,可显著地降低位移反分析的计算耗时。  相似文献   

8.
Simulation-based optimization methods have been recently proposed for calibrating geotechnical models from laboratory and field tests. In these methods, geotechnical parameters are identified by matching model predictions to experimental data, i.e. by minimizing an objective function that measures the difference between the two. Expensive computational models, such as finite difference or finite element models are often required to simulate laboratory or field geotechnical tests. In such cases, simulation-based optimization might prove demanding since every evaluation of the objective function requires a new model simulation until the optimum set of parameter values is achieved. This paper introduces a novel simulation-based “hybrid moving boundary particle swarm optimization” (hmPSO) algorithm that enables calibration of geotechnical models from laboratory or field data. The hmPSO has proven effective in searching for model parameter values and, unlike other optimization methods, does not require information about the gradient of the objective function. Serial and parallel implementations of hmPSO have been validated in this work against a number of benchmarks, including numerical tests, and a challenging geotechnical problem consisting of the calibration of a water infiltration model for unsaturated soils. The latter application demonstrates the potential of hmPSO for interpreting laboratory and field tests as well as a tool for general back-analysis of geotechnical case studies.  相似文献   

9.
Multiparameter prestack seismic inversion is one of the most powerful techniques in quantitatively estimating subsurface petrophysical properties. However, it remains a challenging problem due to the nonlinearity and ill-posedness of the inversion process. Traditional regularization approach can stabilize the solution but at the cost of smoothing valuable geological boundaries. In addition, compared with linearized optimization methods, global optimization techniques can obtain better results regardless of initial models, especially for multiparameter prestack inversion. However, when solving multiparameter prestack inversion problems, the application of standard global optimization algorithms maybe limited due to the issue of high computational cost (e.g., simulating annealing) or premature convergence (e.g., particle swarm optimization). In this paper, we propose a hybrid optimization-based multiparameter prestack inversion method. In this method, we introduce a prior constraint term featured by multiple regularization functions, intended to preserve layered boundaries of geological formations; in particular, to address the problem of premature convergence existing in standard particle swarm optimization algorithm, we propose a hybrid optimization strategy by hybridizing particle swarm optimization and very fast simulating annealing to solve the nonlinear optimization problem. We demonstrate the effectiveness of the proposed inversion method by conducting synthetic test and field data application, both of which show encouraging results.  相似文献   

10.
There is no gainsaying that determining the optimal number, type, and location of hydrocarbon reservoir wells is a very important aspect of field development planning. The reason behind this fact is not farfetched—the objective of any field development exercise is to maximize the total hydrocarbon recovery, which for all intents and purposes, can be measured by an economic criterion such as the net present value of the reservoir during its estimated operational life-cycle. Since the cost of drilling and completion of wells can be significantly high (millions of dollars), there is need for some form of operational and economic justification of potential well configuration, so that the ultimate purpose of maximizing production and asset value is not defeated in the long run. The problem, however, is that well optimization problems are by no means trivial. Inherent drawbacks include the associated computational cost of evaluating the objective function, the high dimensionality of the search space, and the effects of a continuous range of geological uncertainty. In this paper, the differential evolution (DE) and the particle swarm optimization (PSO) algorithms are applied to well placement problems. The results emanating from both algorithms are compared with results obtained by applying a third algorithm called hybrid particle swarm differential evolution (HPSDE)—a product of the hybridization of DE and PSO algorithms. Three cases involving the placement of vertical wells in 2-D and 3-D reservoir models are considered. In two of the three cases, a max-mean objective robust optimization was performed to address geological uncertainty arising from the mismatch between real physical reservoir and the reservoir model. We demonstrate that the performance of DE and PSO algorithms is dependent on the total number of function evaluations performed; importantly, we show that in all cases, HPSDE algorithm outperforms both DE and PSO algorithms. Based on the evidence of these findings, we hold the view that hybridized metaheuristic optimization algorithms (such as HPSDE) are applicable in this problem domain and could be potentially useful in other reservoir engineering problems.  相似文献   

11.
A comparative study of optimization techniques for identifying soil parameters in geotechnical engineering was first presented. The identification methodology with its 3 main parts, error function, search strategy, and identification procedure, was introduced and summarized. Then, current optimization methods were reviewed and classified into 3 categories with an introduction to their basic principles and applications in geotechnical engineering. A comparative study on the identification of model parameters from a synthetic pressuremeter and an excavation tests was then performed by using 5 among the mostly common optimization methods, including genetic algorithms, particle swarm optimization, simulated annealing, the differential evolution algorithm and the artificial bee colony algorithm. The results demonstrated that the differential evolution had the strongest search ability but the slowest convergence speed. All the selected methods could reach approximate solutions with very small objective errors, but these solutions were different from the preset parameters. To improve the identification performance, an enhanced algorithm was developed by implementing the Nelder‐Mead simplex method in a differential algorithm to accelerate the convergence speed with strong reliable search ability. The performance of the enhanced optimization algorithm was finally highlighted by identifying the Mohr‐Coulomb parameters from the 2 same synthetic cases and from 2 real pressuremeter tests in sand, and ANICREEP parameters from 2 real pressuremeter tests in soft clay.  相似文献   

12.
Particle swarm optimization (PSO) is an evolutionary computation approach to solve nonlinear global optimization problems. The PSO idea was made based on simulation of a simplified social system, the graceful but unpredictable choreography of birds flock. This system is initialized with a population of random solutions that are updated during iterations. Over the last few years, PSO has been extensively applied in various geotechnical engineering aspects such as slope stability analysis, pile and foundation engineering, rock and soil mechanics, and tunneling and underground space design. A review on the literature shows that PSO has utilized more widely in geotechnical engineering compared with other civil engineering disciplines. This is due to comprehensive uncertainty and complexity of problems in geotechnical engineering which can be solved by using the PSO abilities in solving the complex and multi-dimensional problems. This paper provides a comprehensive review on the applicability, advantages and limitation of PSO in different disciplines of geotechnical engineering to provide an insight to an alternative and superior optimization method compared with the conventional optimization techniques for geotechnical engineers.  相似文献   

13.
PSO-RBFNN模型及其在岩土工程非线性时间序列预测中的应用   总被引:1,自引:0,他引:1  
岩土工程受力变形演化是一个典型的非线性问题,其演化的高度非线性和复杂性,很难用简单的力学、数学模型描述,但可用粒子群优化径向基神经网络对岩土工程应力、位移非线性时间序列进行动态实时预测。网络径向基层的单元数通过均值聚类法确定后,所有其它参数:中心位置、形状参数、网络权值,均通过粒子群优化算法在全局空间优化确定。工程实例应用表明,该模型预测结果准确、精度高,有良好的应用前景。  相似文献   

14.
Along with the applicability of optimization algorithms, there are lots of features that can affect the functioning of the optimization techniques. The main purpose of this paper is investigating the significance of boundary constraint handling (BCH) schemes on the performance of optimization algorithms. To this end, numbers of deterministic and probabilistic BCH approaches are applied to one of the most recent proposed optimization techniques, named interior search algorithm (ISA). Apart from the implementing different BCH methods, a sensitivity analysis is conducted to find an appropriate setting for the only parameter of ISA. Concrete cantilever retaining wall design as one of the most important geotechnical problems is tackled to declare proficiency of the ISA algorithm, on the one hand, and benchmark the effect of BCH schemes on the final results, on the contrary. As results demonstrate, various BCH approaches have a perceptible impact on the algorithm performance. In like manner, the essential parameter of ISA can also play a pivotal role in this algorithm's efficiency. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In application to numerical analysis of geotechnical problems, the limit-state surface is usually not known in any closed form. The probability of failure can be assessed via the so-called reliability index. A minimization problem can naturally be formed with an implicit equality constraint defined as the limit-state function and optimization methods can be used for such problems. In this paper, a genetic algorithm is proposed and incorporated into a displacement finite element method to find the Hasofer–Lind reliability index. The probabilistic finite element method is then used to analyse the reliability of classical geotechnical systems. The performance of the genetic algorithm (GA) is compared with simpler probability methods such as the first-order-second-moment Taylor series method. The comparison shows that the GA can produce the results fairly quickly and is applicable to evaluation of the failure performance of geotechnical problems involving a large number of decision variables.  相似文献   

16.
Determining the optimum placement of new wells in an oil field is a crucial work for reservoir engineers. The optimization problem is complex due to the highly nonlinearly correlated and uncertain reservoir performances which are affected by engineering and geologic variables. In this paper, the combination of a modified particle swarm optimization algorithm and quality map method (QM + MPSO), modified particle swarm optimization algorithm (MPSO), standard particle swarm optimization algorithm (SPSO), and centered-progressive particle swarm optimization (CP-PSO) are applied for optimization of well placement. The SPSO, CP-PSO, and MPSO algorithms are first discussed, and then the modified quality map method is discussed, and finally the implementation of these four methods for well placement optimization is described. Four example cases which involve depletion drive model, water injection model, and a real field reservoir model, with the maximization of net present value (NPV) as the objective function are considered. The physical model used in the optimization analyses is a 3-dimensional implicit black-oil model. Multiple runs of all methods are performed, and the results are averaged in order to achieve meaningful comparisons. In the case of optimizing placement of a single producer well, it is shown that it is not necessary to use the quality map to initialize the position of well placement. In other cases considered, it is shown that the QM + MPSO method outperforms MPSO method, and MPSO method outperforms SPSO and CP-PSO method. Taken in total, the modification of SPSO method is effective and the applicability of QM + MPSO for this challenging problem is promising  相似文献   

17.
This paper presents a new methodology for slope reliability analysis by integrating the technologies of updated support vector machine (SVM) and Monte Carlo simulation (MCS). MCS is a powerful tool that may be used to solve a broad range of reliability problems and has therefore become widely used in slope reliability analysis. However, MCS often involves a great number of slope stability analysis computations, a process that requires excessive time consumption. The updated SVM is introduced in order to build the relationship between factor of safety and random variables of slope, contributing to reducing a large number of normal computing tasks and enlarging the problem scale and sample size of MCS. In the algorithm of the updated SVM, the particle swarm optimization method is adopted in order to seek the optimal SVM parameters, enhancing the performance of SVM for solving complex problems in slope stability analysis. Finally, the integrating method is applied to a classic slope for addressing the problem of reliability analysis. The results of this study indicate that the new methodology is capable of obtaining positive results that are consistent with the results of classic solutions; therefore, the methodology is proven to be a powerful and effective tool in slope reliability analysis.  相似文献   

18.
Determining optimal well placement and control is essential to maximizing production from an oil field. Most academic literature to date has treated optimal placement and control as two separate problems; well placement problems, in particular, are often solved assuming some fixed flow rate or bottom-hole pressure at injection and production wells. Optimal placement of wells, however, does depend on the control strategy being employed. Determining a truly optimal configuration of wells thus requires that the control parameters be allowed to vary as well. This presents a challenging optimization problem, since well location and control parameters have different properties from one another. In this paper, we address the placement and control optimization problem jointly using approaches that combine a global search strategy (particle swarm optimization, or PSO) with a local generalized pattern search (GPS) strategy. Using PSO promotes a full, semi-random exploration of the search space, while GPS allows us to locally optimize parameters in a systematic way. We focus primarily on two approaches combining these two algorithms. The first is to hybridize them into a single algorithm that acts on all variables simultaneously, while the second is to apply them sequentially to decoupled well placement and well control problems. We find that although the best method for a given problem is context-specific, decoupling the problem may provide benefits over a fully simultaneous approach.  相似文献   

19.
Explicit dynamic relaxation is an efficient tool that has been used to solve problems involving highly non-linear differential equations. The key feature of this method is the ability to use explicit dynamic algorithms in solving static problems. Few attempts have been made to date to apply this technique in conventional geotechnical engineering. In this study, an algorithm that incorporates the application of a stiffness dependent time step scheme is proposed. The algorithm has been successfully used to solve 2D and 3D non-linear geotechnical engineering problems. To calibrate the developed algorithm, numerical simulations have been conducted for a strip and square footings supported by Mohr–Coulomb material. Performance of four different types of brick elements used in collapse load calculation is examined in terms of convergence speed and accuracy. In addition, the role of employing adaptive time steps in reducing the number of iterations needed for convergence is also evaluated.  相似文献   

20.

Slope stability analysis is one of the most intricate problems of geotechnical engineering because it is mathematically difficult to search the critical slip surface of earth slopes with complex strata owing to the involved multimodal function optimization problem. At present, a minimum factor of safety for a non-circular slip surface in a uniform and unreinforced earth slope can be calculated using several methods; however, for a reinforced soil slope, it cannot be easily calculated because of the additional effect of the reinforcement. One efficient method to search the critical slip surface is particle swarm optimization (PSO). PSO can solve complex non-differentiable problems, and its increasing ease of use has facilitated its application to multimodal function optimization problems in a variety of fields. However, the recommended PSO parameters to calculate the safety factors of unreinforced and reinforced soil slopes, namely the inertia and local and global best solution weighting coefficients, have not been sufficiently investigated. Moreover, the computational efficiency of PSO for safety factor calculation, including computational accuracy and time, has not been clarified. To calculate the unreinforced and reinforced soil slope safety factors, this study considers force and moment equilibriums, including the tensile force of the reinforcement. Firstly, the computational efficiency of the calculation process by PSO was shown to increase the maximum number of slip surface nodes in the calculation of the safety factor. Then, an analysis was carried out to investigate the safety factor sensitivity to the PSO parameters. Based on this analysis, appropriate PSO parameters for the safety factor calculation of unreinforced and reinforced soil slopes were proposed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号