首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A hierarchical finite element is presented for the geometrically nonlinear free and forced vibration of a non-uniform Timoshenko beam resting on a two-parameter foundation. Legendre orthogonal polynomials are used as enriching shape functions to avoid the shear-locking problem. With the enriching degrees of freedom, the accuracy of the computed results and the computational efficiency are greatly improved. The arc-length iterative method is used to solve the nonlinear eigenvalue equation. The computed results of linear and nonlinear vibration analyses show that the convergence of the proposed element is very fast with respect to the number of Legendre orthogonal polynomials used. Since the elastic foundation and the axial load applied at both ends of the beam affect the ratios of linear frequencies associated with the internal resonance, they influence the nonlinear vibration characteristics of the beam. The axial tensile stress of the beam in nonlinear vibration is investigated in this paper, and attention should be paid to the geometrically nonlinear vibration resulting in considerably large axial tensile stress in the beam.  相似文献   

2.
This paper presents a numerical formulation for a three dimensional elasto‐plastic interface, which can be coupled with an embedded beam element in order to model its non‐linear interaction with the surrounding solid medium. The formulation is herein implemented for lateral loading of piles but is able to represent soil‐pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The interface is formulated in order to capture localized material plasticity in the soil surrounding the pile within the range of small to moderate lateral displacements. The interface is formulated following two different approaches: (i) in terms of beam degrees of freedoms; and (ii) considering the displacement field of the solid domain. Each of these alternatives has its own advantages and shortcomings, which are discussed in this paper. The paper presents a comparison of the results obtained by means of the present formulation and by other well‐established analysis methods and test results published in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In a cracked material, the stress intensity factors (SIFs) at the crack tips, which govern the crack propagation and are associated with the strength of the material, are strongly affected by the crack inclination angle and the orientation with respect to the principal direction of anisotropy. In this paper, a formulation of the boundary element method (BEM), based on the relative displacements of the crack tip, is used to determine the mixed‐mode SIFs of isotropic and anisotropic rocks. Numerical examples of the application of the formulation for different crack inclination angles, crack lengths, and degree of material anisotropy are presented. Furthermore, the BEM formulation combined with the maximum circumferential stress criterion is adopted to predict the crack initiation angles and simulate the crack propagation paths. The propagation path in cracked straight through Brazilian disc specimen is numerically predicted and the results of numerical and experimental data compared with the actual laboratory observations. Good agreement is found between the two approaches. The proposed BEM formulation is therefore suitable to simulate the process of crack propagation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
王建华  兰斐 《岩土力学》2016,37(4):1127-1136
依据模拟钻井船在黏土层中插桩对邻近桩影响的离心模型试验结果,研究了通过耦合欧拉-拉格朗日(CEL)有限元计算并结合非线性地基梁有限元计算,分析钻井船插桩对邻近桩影响问题的可行性。CEL有限元方法将产生大变形的土体设为欧拉体,采用欧拉有限元方法计算该区域的变形响应,计算过程中,欧拉体的空间网格形状、大小位置保持不变,物质可在网格之间运动;其他土体设为拉格朗日体,采用拉格朗日有限元方法计算变形响应,计算过程中,物质的运动和网格的变形保持一致。运用罚函数方法实现欧拉体与拉格朗日体的耦合。通过CEL有限元计算,可以确定钻井船插桩导致的邻近桩桩身水平位移。进一步通过非线性地基梁有限元模型计算确定桩身弯矩。计算结果表明,利用CEL有限元方法并结合非线性地基梁有限元方法计算出的桩身位移和弯矩沿桩长的变化与离心模型试验结果基本一致。说明采用CEL有限元方法并结合非线性地基梁有限元方法分析黏土层中插桩对邻近桩的影响问题是可行的。CEL有限元模型中欧拉土体范围的设置对计算结果有明显影响。研究表明,若插桩深度小于0.75倍桩靴直径,可将欧拉土体范围设置成1.00~1.25倍桩靴直径;若插桩深度大于0.75倍桩靴直径,将欧拉土体范围取为插桩深度以下0.5倍桩靴直径是恰当的。  相似文献   

5.
6.
This study presents a formulation for field problems using hybrid polygonal finite elements, taking steady state seepage through a porous material as the focus. We make comparisons with a conventional finite element formulation based on a single primary variable, focussing on the advantages of the hybrid formulation in terms of flux field accuracy and extension to convex polygonal shaped elements. For the unconfined case, we adopt a head dependent hydraulic conductivity that does not require remeshing. The performance of the hybrid polygonal element formulation is demonstrated through a series of numerical examples. The results show a sensitivity of the location of the free surface in unconfined seepage to mesh configuration for hybrid quadrilateral meshes with various aspect ratios, but not for hybrid polygonal meshes with various orientations and irregularity. Examination of the free surface location results for several conforming shape function options shows an insensitivity to choice of interpolation function, provided that it conforms with the assumptions in the formulation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an inelastic element for the analysis of beams resting on two-parameter foundations. The element is derived from a two field mixed formulation with independent approximation of forces and displacements. The values for the two parameters of the foundation are derived through an iterative technique that is based on an assumption of plane strain for the soil medium. This iterative behavior is repeated at each time step of the nonlinear solution algorithm. The nonlinear response of structures resting on this improved two-parameter foundation model is analyzed following both a Vlasov and a Pasternak approach. Numerical examples that clarify the advantage of the newly developed model are conducted. These studies confirmed the importance of accounting for the foundation second parameter, and the efficiency and accuracy of the proposed model.  相似文献   

8.
This paper presents a novel macroelement for single vertical piles in sand developed within the hypo-plasticity theory, where the incremental nonlinear constitutive equations are defined in terms of generalized forces, displacements and rotations. Inspired from the macroelement for shallow foundations of Salciarini and Tamagnini (Acta Geotech, 4(3):163–176, 2009), the new element adopts the “intergranular displacement” mutuated from Niemunis and Herle (Mech Cohes Frict Mater, 2:279–299, 1997) to reproduce the behavior under cyclic loading. Analytical and numerical strategies are provided to calibrate the macroelement’s parameters. Comparisons with experimental results show the performance of the macroelement that while being simple and computational fast is suitable for finite element calculations and engineering design.  相似文献   

9.
In this paper a new finite element formulation for numerical analysis of diffused and localized failure behavior of saturated and partially saturated gradient poroplastic materials is proposed. The new finite element includes interpolation functions of first order (C1) for the internal variables field while classical C0 interpolation functions for the kinematic fields and pore pressure. This finite element formulation is compatible with a thermodynamically consistent gradient poroplastic theory previously proposed by the authors. In this material theory the internal variables are the only ones of non-local character. To verify the numerical efficiency of the proposed finite element formulation, the non-local gradient poroplastic constitutive theory is combined with the modified Cam Clay model for partially saturated continua. Thereby, the volumetric strain of the solid skeleton and the plastic porosity are the internal variables of the constitutive theory. The numerical results in this paper demonstrate the capabilities of the proposed finite element formulation to capture diffuse and localized failure modes of boundary value problems of porous media, depending on the acting confining pressure and on the material saturation degree.  相似文献   

10.
The paper presents a semi-analytical method of calculating the response of a pile group. The approach is based on tying the displacement at any point of the soil mass around a pile or group of piles to the displacements experienced by the piles themselves. This is done by multiplying the pile displacements by decay functions. Application of the principle of minimum potential energy and calculus of variations to the resulting displacement field formulation leads to the differential equations for the soil and piles. Solution of these differential equations using finite differences and the method of eigenvectors leads to the desired displacement field in the soil and deflection profiles of the piles. The method produces displacement fields that are very close to those produced by the finite element method at a fraction of the cost. To illustrate the ease of application of the method, it is then used to prepare pile group efficiency charts for some typical soil modulus profiles.  相似文献   

11.
The displacement formulation of the finite element method is well suited to the analysis of elasto-plasticity problems involving compressible material behaviour, but it is well known that numerical difficulties occur when the material is incompressible or nearly incompressible. The effect of these additional constraints depends on both element formulation and mesh topology. A two-dimensional plane strain finite element formulation suitable for the solution of problems involving large strains and displacements (but small rotations) based on the isoparametric approach is described. The kinematics of deformation are defined in terms of the Eulerian strain rates that are invariably used in small strain analysis; the formulation therefore retains some of the character of small strain theory but includes additional geometrically non-linear terms. The results of a series of plane strain finite element analyses of two cylindrical expansion problems are presented. These results confirm the previously observed trend that as Poisson's ratio approaches 0·5 then the quality of the calculated stress deteriorates. The study also indicates that the solution quality depends increasingly on mesh topology as perfect incompressibility is reached.  相似文献   

12.
An analytical investigation of a half‐space containing transversely isotropic material under forced vertical and horizontal displacements applied on a rectangular rigid foundation is presented in this paper. With the goal of a rigorous solution to the shape‐ and rigidity‐ induced singular mixed boundary value problem, the formulation employs scalar potential representation, the Fourier expansion and the Hankel integral transforms method to obtain the surface arbitrary point‐load solution in cylindrical coordinate system. The obtained Green's functions are rewritten in rectangular coordinate system, allowing the response of the half‐space because of an arbitrary distributed load on a rectangular surface area be given in terms of a double integral. The numerical evaluations of stresses are done with the use of an element, which is singular at the edge and the corner of the rectangle. Upon the imposition of the rigidity displacement boundary condition for a rigid foundation and the use of a set of two‐dimensional adaptive‐gradient elements, which can capture the singular behavior in the contact stress effectively, a set of new numerical results are presented to illustrate the effect of transverse isotropy on the foundation response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Boundary integral equations for traction boundary-value problems of two-dimensional elastostatics are derived by the indirect boundary element method. Quadratic variation functions for the representation of geometry, fictitious forces and displacements over each boundary element are described. A system of equations approximating to the boundary integral equations is obtained by a Galerkin formulation in which the integral equation is written at Gauss integration points of elements. The method of computation of the Cauchy principal value is described. Examples of application to the analysis of stress and displacement around underground excavations demonstrate the accuracy and efficiency of the formulation.  相似文献   

14.
In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two‐phase and three‐phase deforming porous media are addressed. To solve the process of fluid flow in partially saturated porous media, a fully coupled three‐phase formulation is developed on the basis of available experimental relations for updating saturation and permeabilities during the analysis. The well‐known element free Galerkin mesh‐free method is adopted. The partition of unity property of MLS shape functions allows for the field variables to be extrinsically enriched by appropriate functions that introduce existing discontinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discontinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215–1233] is selected. As these functions possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generating only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media), as opposed to unenriched and constrained mesh‐free methods. Different problems of multimaterial poro‐elasticity including fully saturated, partially saturated one, and two‐phase flows under the assumption of fully coupled extended formulation of Biot are examined. As a further development, problems involved with both material interface and impermeable discontinuities, where no fluid exchange is permitted across the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A three‐dimensional constitutive model for joints is described that incorporates nonlinear elasticity based on volumetric elastic strain, and plasticity for both compaction and shear with emphasis on compaction. The formulation is general in the sense that alternative specific functional forms and evolution equations can be easily incorporated. A corresponding numerical structure based on finite elements is provided so that a joint width can vary from a fraction of an element size to a width that occupies several elements. The latter case is particularly appropriate for modeling a fault, which is considered simply to be a joint with large width. For small joint widths, the requisite equilibrium and kinematic requirements within an element are satisfied numerically. The result is that if the constitutive equation for either the joint or the rock is changed, the numerical framework remains unchanged. A unique aspect of the general formulation is the capability to handle either pre‐existing gaps or the formation of gaps. Representative stress–strain plots are given to illustrate both the features of the model and the effects of changes in values of material parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Composite Element Model of the Fully Grouted Rock Bolt   总被引:12,自引:1,他引:12  
Summary The three dimensional elasto-viscoplastic composite element method is formulated in this paper for rock masses reinforced by a fully-grouted bolt. If a bolt segment penetrates a finite element representing the rock mass, then a composite element is formed including five sub-elements corresponding to the rock material, the grout material, the bolt material, the rock-grout interface and the bolt-grout interface. The displacements in each sub-element are interpolated from the corresponding nodal displacements of the composite element. By the virtual work principle the governing equation for the solution of the nodal displacements can be formulated. The elasto-viscoplastic characteristics of the materials are considered in the formulation. The new model can be incorporated into the conventional finite element analysis grid, in which several composite elements have fully grouted bolts embedded. In this way the mesh generation of large scale bolted rock structures becomes convenient and feasible. The model has been implemented in a FEM program, and a comparative study between the numerical analysis and a pull out field test has been carried out, from which the validity and the robustness of the new model are justified.  相似文献   

17.
An isogeometric analysis (IGA) is introduced to obtain a head-based solution to Richards equation for unsaturated flow in porous media. IGA uses Non-Uniform Rational B-Spline (NURBS) as shape functions, which provide a higher level of inter-element continuity in comparison with Lagrange shape functions. The semi-discrete nonlinear algebraic equations are solved using a combination of implicit backward-Euler time-integration and Newton-Raphson scheme. The time-step size is adaptively controlled based on the rate of changes in the pore pressure. The results from the proposed formulation are compared and verified against an analytical solution for one-dimensional transient unsaturated flow in a homogenous soil column. The proposed method is then applied to four more complex problems including two-dimensional unsaturated flow in a two-layered soil and a semi-circular furrow. The test cases in two-layered soil system involve sharp variations in the pressure gradient at the intersection of the two media, where the pore water pressure abruptly changes. It is shown that the proposed head-based IGA is able to properly simulate changes in pore pressure at the soils interface using fewer degrees of freedom and higher orders of approximation in comparison with the conventional finite element method.  相似文献   

18.
The behaviour of an embankment built on a Portuguese soft soil is analysed considering the material and geometric non-linearity associated with a coupled soil–water formulation. The numerical predictions are compared with the field data in terms of settlements, horizontal displacements and excess pore water pressures. The repercussions of including the large displacements formulation are also studied. It is found that the analysis considering large displacements results in a decrease in settlements and an increase in the rate of excess pore pressure dissipation, both of which are related to the reduction of the thickness of a deformable layer.  相似文献   

19.
尤红兵  赵凤新  李方杰 《岩土力学》2009,30(10):3133-3138
利用间接边界元方法,在频域内求解了层状场地中局部不均体对平面P波的散射。利用精确的土层动力刚度矩阵进行自由场反应分析,求得位移和应力响应。通过计算虚拟分布荷载的格林影响函数,求得相应位移和应力;根据边界条件确定虚拟分布荷载,最终得到问题的解答。研究了入射P波时,不均体宽度、埋深、厚度、入射角、入射频率度等参数对地表位移幅值的影响,并与相应自由场的结果进行了比较。不均体对P波散射有重要影响,在工程场地地震安全性评价中,应合理考虑局部不均体对场地设计地震动参数确定的影响。  相似文献   

20.
In practical engineering, an applied rectangular area load is not often horizontally or vertically distributed but is frequently inclined at a certain angle with respect to the horizontal and vertical axes. Thus, the solutions of displacements and stresses due to such a load are essential to the design of foundations. This article yields the analytical solutions of displacements and stresses subjected to a uniform rectangular load that inclines with respect to the horizontal and vertical axes, resting on the surface of a cross‐anisotropic geomaterial. The planes of cross‐anisotropy are assumed to be parallel to the horizontal ground surface. The procedures to derive the solutions can be integrated the modified point load solutions, which are represented by several displacement and stresses elementary functions. Then, upon integrations, the displacement and stress integral functions resulting from a uniform inclined rectangular load for (1) the displacements at any depth, (2) the surface displacements, (3) the average displacements in a given layer, (4) the stresses at any depth, and (5) the average stresses in a given layer are yielded. The proposed solutions are clear and concise, and they can be employed to construct a series of calculation charts. In addition, the present solutions clarify the load inclinations, the dimensions of a loaded rectangle, and the analyzed depths, and the type and degree of geomaterial anisotropy profoundly affect the displacements and stresses in a cross‐anisotropic medium. Parametric results show that the load inclination factor should be considered when an inclined rectangular load uniformly distributed on the cross‐anisotropic material. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号