首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analytical solution for the vertical vibration of a large-diameter pipe pile considering the radial inhomogeneity of both the outer and inner soil caused by the construction disturbance effect. The radial inhomogeneity of the soil is simulated by gradually varying the soil parameters in the radial direction. The complex impedance at the pile head is obtained by introducing the variable separation method and impedance function transfer method. The proposed solution is compared with existing solutions to verify its reliability. Parametric studies are conducted to investigate the vertical vibration characteristics of the pile.  相似文献   

2.
Most analytical or semi‐analytical solutions of the problem of load‐settlement response of axially loaded piles are based on the assumption of zero radial displacement. These solutions also are only applicable to piles embedded in either a homogeneous or a Gibson soil deposit. In reality, soil deposits consist of multiple soil layers with different properties, and displacements in the radial direction within the soil deposit are not zero when the pile is loaded axially. In this paper, we present a load‐settlement analysis applicable to a pile with circular cross section installed in multilayered elastic soil that accounts for both vertical and radial soil displacements. The analysis follows from the solution of the differential equations governing the displacements of the pile–soil system obtained using variational principles. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. We compare the results from the present analysis with those of an analytical solution that considers only vertical soil displacements. The analysis presented in this paper also provides useful insights into the displacement and strain fields around axially loaded piles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
郑长杰  丁选明  安淑红 《岩土力学》2016,37(9):2477-2483
考虑地基沉积过程中产生的竖向和水平向力学性质的差异,对横观各向同性地基中管桩扭转振动频域响应进行了理论研究。基于横观各向同性材料的本构关系以及桩-土耦合扭转振动,建立了桩土系统定解问题,通过Laplace变换和分离变量法求得了桩周土和桩芯土扭转振动位移形式解。通过桩-土接触面的连续条件,求得了管桩扭转频域响应解析解,并得到了桩顶复动刚度和速度导纳的表达式。将所得解退化到横观各向同性地基中实心桩解以及均匀地基中管桩解,并与已有文献进行了对比,验证了解的合理性。通过数值算例,分析了桩周土和桩芯土的横观各向同性力学参数对桩顶扭转复刚度及速度导纳的影响。  相似文献   

5.
沈纪苹  陈蕾 《岩土力学》2016,37(10):2810-2816
在考虑土体分层特性的基础上,分别建立了管桩桩周土体和桩芯土体的水平振动控制方程。通过引入势函数并考虑桩周土和桩芯土径向位移和环向位移的边界条件及其奇偶性,求得了管桩-土动力相互作用的刚度系数和阻尼系数。将土体模拟为连续分布的弹簧-阻尼器,并考虑桩芯土和桩周土的作用,建立了层状土中管桩的水平振动方程。借助初参数法和传递矩阵法求解了管桩的水平振动,得到了管桩桩顶的水平动力阻抗。通过数值分析,得到了土层剪切模量、管桩壁厚、桩周土和桩芯土剪切模量比、土层厚度等对管桩桩顶动力阻抗的影响规律。土层剪切模量、管桩壁厚、桩周土和桩芯土剪切模量比对层状土中管桩水平振动的影响主要在低频处,土层厚度在较宽的频率范围内对管桩水平振动有影响;管桩壁越厚,桩周土的剪切模量越大时,管桩水平动力阻抗的绝对值越大。  相似文献   

6.
This paper presents an analytical solution for the lateral dynamic response of a pipe pile in a saturated soil layer. The wave propagations in the saturated soil and the pipe pile are simulated by Biot's three‐dimensional poroelastic theory and one‐dimensional elastic theory, respectively. The governing equations of soil are solved directly without introducing potential functions. The displacement response and dynamic impedances of the pipe pile are obtained based on the continuous conditions between the pipe pile and both the outer and inner soil. A comparison with an existing solution is performed to verify the proposed solution. Selected numerical results for the lateral dynamic responses and impedances of the pipe pile are presented to reveal the lateral vibration characteristics of the pile‐soil system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The dynamic response of a viscoelastic bearing pile embedded in multilayered soil is theoretically investigated considering the transverse inertia effect of the pile. The soil layers surrounding the pile are modeled as a set of viscoelastic continuous media in three-dimensional axisymmetric space, and a simplified model, i.e., the distributed Voigt model, is proposed to simulate the dynamic interactions of the adjacent soil layers. Meanwhile, the pile is assumed to be a Rayleigh–Love rod with material damping and can be divided into several pile segments allowing for soil layers and pile defects. Both the vertical and radial displacement continuity conditions at the soil–pile interface are taken into account. The potential function decomposition method and the variable separation method are introduced to solve the governing equations of soil vibration in which the vertical and radial displacement components are coupled. On this basis, the impedance function at the top of the pile segment is derived by invoking the force and displacement continuity conditions at the soil–pile interface as well as the bottom of pile segment. The impedance function at the pile head is then obtained by means of the impedance function transfer method. By means of the inverse Fourier transform and convolution theorem, the velocity response in the time domain can also be obtained. The reasonableness of the assumptions of the soil-layer interactions have been verified by comparing the present solutions with two published solutions and a set of well-documented measured pile test data. A parametric analysis is then conducted using the present solutions to investigate the influence of the transverse inertia effect on the dynamic response of an intact pile and a defective pile for different design parameters of the soil–pile system.  相似文献   

8.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
An analysis of a pile vertical response considering soil inhomogeneity in the radial direction under dynamic loads is presented. The solution technique is based on a three‐dimensional axisymmetric model, which includes the consideration of the vertical displacement of the soil. The soil domain is subdivided into a number of annular vertical zones, and the continuity of the displacements and stresses are imposed at both the interface of pile–soil and the interfaces of adjacent soil zones to establish the dynamic equilibrium equations of the pile–soil interaction. Then, the equations of each soil zone and of the pile are solved one by one to obtain the analytical and semi‐analytical dynamic responses at the top of the pile in the frequency domain and time domain. Parametric studies have been performed to examine the influence of soil parameters' variations in the radial direction caused by the construction effect on the dynamic responses of pile. The results of the studies have been summarized and presented in figures to illustrate the influences of the soil parameters as they change radially. The effect of the radius of the disturbed soil zone caused by construction is also studied in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
刘林超  肖琪聃  闫启方 《岩土力学》2018,39(5):1720-1730
基于土体的三维波动模型研究了饱和土中单个管桩的竖向振动。将桩周土和桩芯土视为两相多孔介质,管桩视为等截面的圆管杆单元。在考虑桩周饱和土和桩芯饱和土径向位移和竖向位移的情况下,建立了基于土体三维波动模型的饱和土-管桩竖向耦合振动模型。借助势函数和分离变量法并考虑土体边界条件,求解了考虑土体三维波动的桩周饱和土和桩芯饱和土的竖向振动。在此基础上,考虑管桩桩端边界条件,利用三角函数正交性求解了饱和土中单个管桩的竖向振动,得到了管桩桩顶的竖向复刚度。通过数值算例,对比分析了土体三维波动模型解和不考虑土体径向位移的简化模型解的计算结果,分析了主要桩、土参数对饱和土中管桩竖向振动的影响。研究表明:当管桩壁较薄时且低频时不应忽略土体径向位移的影响,在动态刚度因子和等效阻尼随频率变化曲线峰值峰谷处不宜忽略土体液相的影响,管桩壁不宜过薄。管桩壁厚、长径比、桩芯饱和土与桩周饱和土密度比、剪切模量比以及桩-土模量比对饱和土中管桩竖向振动有较大影响,在进行管桩设计时需要综合考虑相关参数。  相似文献   

11.
An analytical solution is developed in this paper to investigate the vertical time-harmonic response of a pipe pile embedded in a viscoelastic saturated soil layer. The wave propagation in the saturated soil is simulated by Biot’s 3D poroelastic theory and that in the pipe pile is simulated by 1D elastodynamic theory. Potential functions are applied to decouple the governing equations of the soil. The analytical solutions of the outer and inner soil in frequency domain are obtained by the method of separation of variables. The vertical response of the pipe pile is then obtained based on the continuity assumption of the displacement and stress between the pipe pile and both the outer and inner soil. The solution is compared with existing solutions to verify the validity. Numerical examples are presented to analyze the vibration characteristics of the pile.  相似文献   

12.
This study theoretically investigates the dynamic response of an end‐bearing pile embedded in saturated soil considering the transverse inertial effect of the pile. The saturated soil surrounding the pile is described by Biot poroelastic theory, and the pile is represented by a Rayleigh‐Love rod because both the vertical and radial displacements at the soil‐pile interface are considered. The potential function decomposition method and variable separation method are introduced to solve the governing equations of the soil, in which the vertical and radial displacement components are coupled. The governing equation of the pile is solved using the continuity conditions at the pile‐soil interface. Next, the velocity admittance in the frequency domain and the velocity response in the time domain at the pile top are presented based on the Laplace transform and inverse Fourier transform, respectively. Subsequently, the reduced solution is compared with a 1‐dimensional model solution to verify the validity, and the influences of the slenderness ratio of the pile on the transverse inertial effect of the pile are analyzed. Moreover, Poisson ratio, the slenderness ratio of the pile, and the pile‐soil modulus ratio are studied. Finally, the theoretical and measured curves in the engineering project are compared, and the results demonstrate the good application prospects of the solution presented in this article.  相似文献   

13.
饱和黏弹性地基土中管桩纵向振动研究   总被引:1,自引:0,他引:1  
应跃龙  罗海亮  闻敏杰 《岩土力学》2013,34(Z1):103-108
用解析方法在频率域内研究考虑质量耦合效应的饱和黏弹性地基土中管桩的纵向振动特性。基于Biot理论,采用薄层法,推导得到饱和黏弹性地基土的位移、应力等的表达式。将管桩等效为一维弹性杆件处理。根据界面连续性条件,给出饱和黏弹性地基土中管桩的纵向振动一般分析方法和桩顶动力复刚度的表达式。在该基础上,对比分析饱和地基土中实心桩和管桩纵向振动特性。通过算例分析,考察桩周土和桩芯土的力学参数对桩顶刚度因子和等效阻尼的影响。研究表明,饱和黏弹性地基土中实心桩和管桩的纵向振动有明显的差异。  相似文献   

14.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This investigation is concerned with the mathematical analysis of a viscoelastic prestressed pipe pile embedded in multilayered soil under vertical dynamic excitation. The pile surrounding soil is governed by the plane strain model, and the soil plug is assumed to be an additional mass connected to the pipe pile shaft by applying the distributed Voigt model. Meanwhile, the prestressed pipe pile is assumed to be a vertical, viscoelastic, and hollow cylinder governed by the one‐dimensional wave equation. Then, analytical solutions of the dynamic response of the pipe pile in the frequency domain are derived by means of the Laplace transform and impedance function transfer method. Subsequently, the corresponding quasi‐analytical solution in the time domain for the case of the prestressed pipe pile undergoing a vertical semi‐sinusoidal exciting force applied at the pile top is obtained by employing the inverse Fourier transform. Utilizing these solutions, selected results for the velocity admittance curve and the reflected wave curve are presented for different heights of the soil plug to examine the influence of weld properties on the vertical dynamic response of prestressed pipe pile. The reasonableness of the theoretical model is verified by comparing the calculated results based on the presented solutions with measured results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an analytical solution for determining the dynamic characteristics of axially loaded piles embedded in elastic-poroelastic layered soil of finite thickness. The interface between the elastic and poroelastic soil coincides with the groundwater table level, which is explicitly taken into account in the solution. The pile is modelled as elastic one-dimensional rod to account for the effect of its dynamic characteristics on the response of the soil-pile system. The solution is based on Biot's poroelastodynamic theory and the classical elastodynamic theory, which we use to establish the governing equations of the soil and pile. Accordingly, the pile base resistance, shaft reaction, and the complex impedance of soil-pile system are obtained using the method of Hankel integral transformation. Following the validation of the derived solution, we identify the main parameters affecting the vertical dynamic impedance of the pile via a parametric study. The presented method poses as an efficient alternative for quickly estimating the dynamic characteristics of axially loaded piles, without having to resort to complex numerical analyses.  相似文献   

17.
饱和土中管桩的水平动阻抗研究   总被引:3,自引:0,他引:3  
刘林超  闫启方 《岩土力学》2014,35(5):1348-1356
为了考察桩、土主要参数对饱和土中管桩水平振动的影响,将土体分为桩周饱和土和桩芯饱和土两部分,利用多孔介质理论的饱和土控制方程建立了饱和土-管桩的耦合振动模型。在考虑桩周饱和土和桩芯饱和土边界条件的情况下,运用势函数解耦的方法对桩周饱和土和桩芯饱和土的水平振动进行了求解。在考虑桩周饱和土和桩芯饱和土对管桩作用的情况下对饱和土中管桩的水平振动进行了求解,得到了管桩桩顶的水平动力阻抗,并分析了主要桩、土参数对管桩水平动力阻抗的影响。研究表明:管桩内外半径、桩周土和桩芯土剪切模量比、泊松比之比对管桩水平动力阻抗的影响较大,低频时液-固耦合系数比对管桩水平动力阻抗有一定的影响,而阻尼比之比对管桩水平动力阻抗阻尼因子有一定的影响。  相似文献   

18.
路基荷载下PCC刚性桩复合地基沉降简化计算   总被引:8,自引:3,他引:5  
费康  刘汉龙  高玉峰 《岩土力学》2004,25(8):1244-1248
将路堤荷载作用下的刚性桩复合地基变形,简化为只有竖向变形,水平变形可以忽略,然后,应用土体的平衡、几何、物理方程,建立沉降计算的控制方程。桩土界面的接触条件按位移协调或产生滑移变形两种情况分别建立,采用有限差分法离散求解,可得桩、桩周土各自的沉降变形、桩土界面的摩擦力分布。与有限元分析和现场实测结果的对比表明,该简化方法具有较高的准确性,可以方便地应用到工程实际。  相似文献   

19.
带帽刚性桩复合地基荷载传递机理研究   总被引:2,自引:0,他引:2  
为了研究带帽刚性桩复合地基荷载传递机理,基于弹性理论和合理假定,采用荷载传递函数法,建立了带帽刚性桩复合地基中桩体沉降及其轴向应力、桩帽下土体竖向位移及其竖向应力、桩帽间土体竖向位移及其竖向应力、桩身侧摩阻力、桩帽边缘土体之间的侧摩阻力与荷载水平、深度之间的控制微分方程。采用微分方程的近似解法,推导出相应地解析表达式。利用桩体荷载沉降关系作为已知条件进行求解,计算结果能够反映带帽刚性桩复合地基荷载传递的一般力学性状规律。  相似文献   

20.
为了分析径向非均质土中单桩纵向振动特性,基于复刚度传递径向多圈层并采用黏性阻尼模型描述桩周土材料阻尼,建立了三维轴对称径向成层非均质土体中桩基纵向振动简化分析模型。采用Laplace变换和复刚度传递方法,递推得出桩周土体与桩体界面处复刚度,进而利用桩-土完全耦合条件推导得出桩顶动力阻抗解析解,并将所得解退化到均质土情况,与已有解答进行比较验证其合理性。在此基础上对桩基纵向振动特性进行参数化分析,计算结果表明:桩周土体阻尼系数、桩底土阻尼因子仅对桩顶动力阻抗曲线振幅有较明显的影响,而桩底土刚度因子对桩顶动力阻抗曲线振幅及共振频率均有显著影响;桩周土软(硬)化程度越高(低),桩顶动力阻抗曲线振幅越大(小);桩周土软(硬)化范围越大,桩顶动力阻抗曲线振幅水平越高(低);但桩周土软(硬)化程度、软(硬)化范围对桩顶动力阻抗曲线共振频率影响则可忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号