首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper suggests a new method for obtaining steady‐state solutions for ‘full‐flow’ penetrometers. The method is based on the numerical solution of the small strain plastic‐flow problem (i.e. rigid plastic material) with an inhomogeneous strength field, which is determined by converting changes of material properties over time in a stationary frame of reference into spatial distribution of strength in a moving frame of reference. Rather than building streamlines from back integration of soil element distortion, as previous methods have suggested, the method treats the domain as continuous with the associated field equations. The method employs an upstream weighting technique for the determination of information flow within the domain. The execution order for the calculation is based on topological ordering. This results in the calculation having a complexity of O(N), as compared with O(N1.5) for the strain path or streamline methods (N is the number of discretized points), which significantly reduces the calculation time. The formulation is presented for the cylindrical (T‐bar) penetrometer, and includes aspects of soil strength degradation, strain rate effects, strength anisotropy, and interface strength law. Comparison to previously published values, based on large displacement finite element simulations with remeshing, showed good agreement, indicating on the correctness of the suggested approach. Investigation into the soil rigid‐body rotation and the remolding effect on anisotropy characteristics showed an interesting behavior, where the decrease of strength anisotropy due to remolding has a greater influence when the soil strength is higher in the vertical direction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Since development of cavity expansion theory and strain path method, almost all the conventional analyses of pile penetration problem have been based on circular cross section penetrometer. However, noncylindrical pile (with noncircular cross section) is also required in geotechnical engineering such as rectangular cross‐sectional pile, X‐sectional cast‐in‐place concrete pile, H‐shaped steel pile, prefabricated vertical drains, and flat dilatometer. This paper presents a novel and general analytical approach for capturing the soil deformation mechanism around the pile with arbitrary cross section. The penetration problem is simulated by a new 2‐dimensional (radial and circumferential) cavity expansion model. Based on the theoretical framework of strain path method, the kinematics (velocity field) of the noncylindrical cavity expansion is reduced to solve the Laplace equation with arbitrary velocity boundary conditions by using the conformal mapping technique. Then, solutions for the strain and displacement, which could consider the large deformation effect, are obtained by the integration of the strain rate and velocity along the streamline. The analytical solution is validated by comparing the degenerate solution of this study with conventional circular (cylindrical) cavity expansion theory. Subsequently, typical numerical examples for the deformation mechanism of elliptical and rectangular cavity expansion are presented to prove the advantage of the proposed new solution particularly in capturing the noncylindrical symmetric displacement field. A brief application of the proposed new analytical solution to the interpretation of the smear effect of prefabricated vertical drain installation confirms its useful in geotechnical engineering.  相似文献   

3.
Many numerical methods that simulate groundwater flow, particularly the continuous Galerkin finite element method, do not produce velocity information directly. Many algorithms have been proposed to improve the accuracy of velocity fields computed from hydraulic potentials. The differences in the streamlines generated from velocity fields obtained using different algorithms are presented in this report. The superconvergence method employed by FEFLOW, a popular commercial code, and some dual-mesh methods proposed in recent years are selected for comparison. The applications to depict hydrogeologic conditions using streamlines are used, and errors in streamlines are shown to lead to notable errors in boundary conditions, the locations of material interfaces, fluxes and conductivities. Furthermore, the effects of the procedures used in these two types of methods, including velocity integration and local conservation, are analyzed. The method of interpolating velocities across edges using fluxes is shown to be able to eliminate errors associated with refraction points that are not located along material interfaces and streamline ends at no-flow boundaries. Local conservation is shown to be a crucial property of velocity fields and can result in more accurate streamline densities. A case study involving both three-dimensional and two-dimensional cross-sectional models of a coal mine in Inner Mongolia, China, are used to support the conclusions presented.  相似文献   

4.
This paper investigates the potential of support vector machines (SVM)‐based classification approach to assess the liquefaction potential from actual standard penetration test (SPT) and cone penetration test (CPT) field data. SVMs are based on statistical learning theory and found to work well in comparison to neural networks in several other applications. Both CPT and SPT field data sets is used with SVMs for predicting the occurrence and non‐occurrence of liquefaction based on different input parameter combination. With SPT and CPT test data sets, highest accuracy of 96 and 97%, respectively, was achieved with SVMs. This suggests that SVMs can effectively be used to model the complex relationship between different soil parameter and the liquefaction potential. Several other combinations of input variable were used to assess the influence of different input parameters on liquefaction potential. Proposed approach suggest that neither normalized cone resistance value with CPT data nor the calculation of standardized SPT value is required with SPT data. Further, SVMs required few user‐defined parameters and provide better performance in comparison to neural network approach. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The Strain Path Method (SPM) is an approximate framework for simulating the disturbance caused by piles or penetrometers in soil. The key conceptual assumption of the SPM is that the deformation and strain fields caused during these penetration processes are strongly kinematically constrained (especially during undrained penetration of clays) and can be estimated independently from the actual constitutive properties of the surrounding soil. Previous applications of SPM have estimated strain fields for a variety of penetrometer geometries using velocity fields of ideal inviscid fluids. This paper refines the strain field for penetrometers with 60° conical tips using numerically computed velocity fields in viscous fluids with a variety of boundary conditions imposed on the penetrometer shaft. Following a parametric study, a set of flow conditions is selected which provides a best fit between computed soil deformations and physical displacement measurements made in three separate experiments. The approach is simple and rapid and, while highlighting some of the inaccuracies associated with the existing SPM solution, may also be used for comparative purposes to assist the development of other approaches to the deep penetration problem. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A new finite element model based on a large strain formulation has been developed to study cone penetration in normally consolidated sand. An auto‐adaptive remeshing technique was utilized for handling the very large distortion of sand surrounding the cone tip. A frictional contact interface utilizing Mohr–Coulomb's theory was chosen to represent interactions between the surface of the cone and sand. To model the sand behaviour, the non‐associated Drucker–Prager constitutive model was selected. ABAQUS, a commercial finite element software package, was used to implement the model. The explicit solution algorithm was chosen due to its effectiveness for complicated contact problems. Analysis results proved that the model successfully captured the cone penetration behavior in sand. In addition, a chart to predict internal friction angles based on cone tip resistance for different vertical effective stresses was provided. This paper also shows a typical distribution of sleeve resistance, tip resistance—penetration relationship, and typical contours of vertical, horizontal, and shear stresses in normally consolidated sand. Finally, a non‐uniform resistance was found along the length of the friction sleeve. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
单桩极限承载力的静力触探估算法研究   总被引:2,自引:0,他引:2  
结合上海现行规范,在利用高应变动力测试获得单桩极限侧摩阻力和极限端阻力的基础上,提出静力触探估算单桩极限承载力的修正公式,并对其中的修正系数进行分析,从而获得了修正系数的统计结果。为减少高应变动力测试可能带来的误差,利用静载荷结果对所得的修正公式进行再次修正,并最终获得由静力触探估算单桩极限承载力的公式。工程实例验证表明,用所得公式计算单桩极限承载力的结果精度更高,从而为研究静力触探确定单桩极限承载力提供了一种新的途径。  相似文献   

8.
This paper presents a numerical model for the analysis of cone penetration in soft clay based on the finite element method. The constitutive behaviour of the soil is modelled by modifying an elastic, perfectly-plastic soil model obeying Von-Mises yield criterion to take into account the strain-softening, rate dependent behaviour of soft clay. Since this is a problem involving large soil deformations, the analysis is carried out using an Arbitrary Lagrangian Eulerian method where the quality of the mesh is preserved during penetration. The variation of cone resistance is examined with various parameters such as rigidity index of the soil, in situ stress anisotropy and roughness at the cone–soil interface, which influence the penetration resistance of the cone. A theoretical correlation has been developed incorporating these parameters and the results have been compared with previous correlations based on the cavity expansion theory, finite element method and strain path method. With the increase in strain-softening, relative brittleness of the soil increases and the penetration resistance is significantly reduced. With the rising strain-rate dependency, penetration resistance increases but this increase is independent of the degree of brittleness of the soil.  相似文献   

9.
This paper deals with the problem of T‐bar penetration. New kinematically admissible velocity fields are derived from elastic solutions of incompressible material using Airy stress function. These velocity fields are used to obtain upper bounds to collapse loads. Two particular solutions are presented, one for a rough contact surface between the T‐bar and soil and the other for a smooth contact surface. The merit of the solutions is that within the boundaries of the velocity field, the soil is required to shear compatibly and continuously. Therefore, these solutions can easily be combined with the strain path method to estimate rate and softening effects. Analysis including consideration of strain rate effect showed that the new mechanisms predict, under certain conditions, lower values than previously published upper bound solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A numerical technique has been implemented to perform strain path analyses for arbitrary three-dimensional (3D) penetrometers. The technique is based on that developed in aeronautical engineering for the calculation of incompressible potential flows about arbitrary 3D, non-lifting bodies. It uses a source-density distribution on the surface of the body and solves for the distribution necessary to make the normal component of fluid velocity zero on the boundary. The surface of a 3D body is approximated by a series of plane quadrilaterals, and the integral equation for the source density is replaced by a set of linear algebraic equations which are then solved for the source densities on the quadrilaterals. The displacements and strains are eventually derived based on these source densities. A series of strain-path analyses have been performed for cone and flat dilatometer penetrations. Results show that the soil responses to these two types of penetrometers are fundamentally different.  相似文献   

11.
A large strain analysis of undrained expansion of a spherical/cylindrical cavity in a soil modelled as non‐linear elastic modified Cam clay material is presented. The stress–strain response of the soil is assumed to obey non‐linear elasticity until yielding. A power‐law characteristic or a hyperbolic stress–strain curve is used to describe the gradual reduction of soil stiffness with shear strain. It is assumed that, after yielding, the elasto‐plastic behaviour of the soil can be described by the modified Cam clay model. Based on a closed‐form stress–strain response in undrained condition, a numerical solution is obtained with the aid of simple numerical integration technique. The results show that the stresses and the pore pressure in the soil around an expanded cavity are significantly affected by the non‐linear elasticity, especially if the soil is overconsolidated. The difference between large strain and small strain solutions in the elastic zone is not significant. The stresses and the pore pressure at the cavity wall can be expressed as an approximate closed‐form solution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths. The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
In geomechanics, limit analysis provides a useful method for assessing the capacity of structures such as footings and retaining walls, and the stability of slopes and excavations. This paper presents a finite element implementation of the kinematic (or upper bound) theorem that is novel in two main respects. First, it is shown that conventional linear strain elements (6‐node triangle, 10‐node tetrahedron) are suitable for obtaining strict upper bounds even in the case of cohesive‐frictional materials, provided that the element sides are straight (or the faces planar) such that the strain field varies as a simplex. This is important because until now, the only way to obtain rigorous upper bounds has been to use constant strain elements combined with a discontinuous displacement field. It is well known (and confirmed here) that the accuracy of the latter approach is highly dependent on the alignment of the discontinuities, such that it can perform poorly if an unstructured mesh is employed. Second, the optimization of the displacement field is formulated as a standard second‐order cone programming (SOCP) problem. Using a state‐of‐the‐art SOCP code developed by researchers in mathematical programming, very large example problems are solved with outstanding speed. The examples concern plane strain and the Mohr–Coulomb criterion, but the same approach can be used in 3D with the Drucker–Prager criterion, and can readily be extended to other yield criteria having a similar conic quadratic form. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
An analytical solution of cavity expansion in two different concentric regions of soil is developed and investigated in this paper. The cavity is embedded within a soil with finite radial dimension and surrounded by a second soil, which extends to infinity. Large‐strain quasi‐static expansion of both spherical and cylindrical cavities in elastic‐plastic soils is considered. A non‐associated Mohr–Coulomb yield criterion is used for both soils. Closed‐form solutions are derived, which provide the stress and strain fields during the expansion of the cavity from an initial to a final radius. The analytical solution is validated against finite element simulations, and the effect of varying geometric and material parameters is studied. The influence of the two different soils during cavity expansion is discussed by using pressure–expansion curves and by studying the development of plastic regions within the soils. The analytical method may be applied to various geotechnical problems, which involve aspects of soil layering, such as cone penetration test interpretation, ground‐freezing around shafts, tunnelling, and mining. © 2014 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.  相似文献   

15.
This study explores the potential of adaptive neuro-fuzzy inference systems (ANFIS) for prediction of the ultimate axial load bearing capacity of piles (Pu) using cone penetration test (CPT) data. In this regard, a reliable previously published database composed of 108 datasets was selected to develop ANFIS models. The collected database contains information regarding pile geometry, material, installation, full-scale static pile load test and CPT results for each sample. Reviewing the literature, several common and uncommon variables have been considered for direct or indirect estimation of Pu based on static pile load test, cone penetration test data or other in situ or laboratory testing methods. In present study, the pile shaft and tip area, the average cone tip resistance along the embedded length of the pile, the average cone tip resistance over influence zone and the average sleeve friction along the embedded length of the pile which are obtained from CPT data are considered as independent input variables where the output variable is Pu for the ANFIS model development. Besides, a notable criticism about ANFIS as a prediction tool is that it does not provide practical prediction equations. To tackle this issue, the obtained optimal ANFIS model is represented as a tractable equation which can be used via spread sheet software or hand calculations to provide precise predictions of Pu with the calculated correlation coefficient of 0.96 between predicted and experimental values for all of the data in this study. Considering several criteria, it is represented that the proposed model is able to estimate the output with a high degree of accuracy as compared to those results obtained by some direct CPT-based methods in the literature. Furthermore, in order to assess the capability of the proposed model from geotechnical engineering viewpoints, sensitivity and parametric analyses are done.  相似文献   

16.
A new model for calculating the resistance to penetration into geological or geologically derived materials is proposed. We assume steady‐state flow of the target material over the penetrator. The target medium is described by a rate dependent constitutive equation that accounts for combined effects of strain rate and compaction on yielding. The wedge‐shaped penetrator is considered to be rigid. The influence of the characteristics of the penetrator/target interface, impact velocity, target mechanical properties and nose geometry on the resistance to penetration is investigated. It is found that for low to intermediate impact velocities, accounting for friction results in a blunter optimal wedge geometry for optimal penetration performance. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The double‐spike approach for correction of instrumental mass bias in mass spectrometry data is well established. However, there is very little consistency within the scientific community in terms of double‐spike data reduction. Double‐spike solutions require computer calculation, using either geometric or algebraic approaches, and are often performed using spreadsheet calculations that vary from group to group and between isotope systems. Here, we present IsoSpike, a generalised computer procedure for the processing of double‐spike mass spectrometry data, built as an add‐on for the Iolite data‐reduction package ( www.iolite.org.au ). Use of this software permits visualisation of mass spectrometry data in a time window, and rigorous treatment and screening of data. Additionally, IsoSpike uses an integration‐by‐integration approach where the double‐spike calculations are performed on every integration within an analysis, providing straightforward quantification of uncertainties on double‐spike‐corrected isotope ratios. The advantages of this approach over traditional methods are discussed here. Platinum stable isotope data are presented as an example data set, although the procedure is applicable to any double‐spike system. IsoSpike is freely available from www.isospike.org .  相似文献   

18.
Fast 3D Reservoir Simulation and Scale Up Using Streamtubes   总被引:1,自引:0,他引:1  
This paper presents an implementation of a semianalytical method for oil recovery calculation in heterogeneous reservoirs that is both fast and accurate. The method defines streamline paths based on a conventional single-phase incompressible flow calculation. By calculating the time-of-flight for a particle along a streamline and assigning a volumetric flux to each streamline, the cumulative pore volume of a streamtube containing the streamline can be calculated. Subsequently, the streamtube geometries are kept constant and the effects of the time varying mobility distribution in two-phase flow are accounted for by varying the flow rate in each streamtube, based on fluid resistance changes along the streamtube. Oil recovery calculations are then done based on the 1D analytical Buckley–Leverett solution. This concept makes the method extremely fast and easy to implement, making it ideal to simulate large reservoirs generated by geostatiscal methods. The simulation results of a 3D heterogeneous reservoir are presented and compared with those of other simulators. The results shows that the new simulator is much faster than a traditional finite difference simulator, while having the same accuracy. The method also naturally handles the upscaling of absolute and relative permeability. We make use of these upscaling abilities to generate a coarse curvilinear grid that can be used in conventional simulators with a great advantage over conventional upscaled Cartesian grids. This paper also shows an upscaling example using this technique.  相似文献   

19.
An approximate two‐dimensional model for indentation of blunt objects into various types of rigid‐perfectly plastic cohesive‐frictional material is derived. Particular emphasis is placed on considering indentation as a process involving evolution of the boundary of material displaced by the indenter. Force–penetration relationships are obtained by an incremental approach utilizing key kinematic and static information from indentation of a flat punch. Albeit approximate, the proposed model applies to arbitrary indenter geometry and weightless or ponderable cohesive‐frictional materials exhibiting associated or non‐associated plastic flow. Two specific indenter geometries, the cylinder and blunt wedge, are explored in detail. Favorable agreement is found between the analytic results and those obtained using the finite element method (FEM). For both the wedge and cylinder, it is further shown that accurate analytic expressions relating indentation force explicitly to penetration can be derived. In the case of the wedge and weightless material, predictions of indentation force obtained from the derived expressions are very close to those computed from implicit equations available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a simplified finite element analysis technique, the ‘Press‐Replace’ technique, to model pile penetration problems in geotechnical engineering, particularly, pile jacking. The method is employed in standard finite element analysis software. The method involves a straining and a consequent geometry update phase. First, a cone penetration test in (undrained) clay is modelled and compared with the results of analytical, semi‐analytical and more advanced finite element techniques. The model sensitivity for the step size and mesh is investigated using a hypoplastic constitutive model. An optimum way of modelling based on the numerical performance is shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号