首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ricker‐compliant deconvolution spikes at the center lobe of the Ricker wavelet. It enables deconvolution to preserve and enhance seismogram polarities. Expressing the phase spectrum as a function of lag, it works by suppressing the phase at small lags. A by‐product of this decon is a pseudo‐unitary (very clean) debubble filter where bubbles are lifted off the data while onset waveforms (usually Ricker) are untouched.  相似文献   

2.
Klauder wavelet removal before vibroseis deconvolution   总被引:1,自引:0,他引:1  
The spiking deconvolution of a field seismic trace requires that the seismic wavelet on the trace be minimum phase. On a dynamite trace, the component wavelets due to the effects of recording instruments, coupling, attenuation, ghosts, reverberations and other types of multiple reflection are minimum phase. The seismic wavelet is the convolution of the component wavelets. As a result, the seismic wavelet on a dynamite trace is minimum phase and thus can be removed by spiking deconvolution. However, on a correlated vibroseis trace, the seismic wavelet is the convolution of the zero-phase Klauder wavelet with the component minimum-phase wavelets. Thus the seismic wavelet occurring on a correlated vibroseis trace does not meet the minimum-phase requirement necessary for spiking deconvolution, and the final result of deconvolution is less than optimal. Over the years, this problem has been investigated and various methods of correction have been introduced. In essence, the existing methods of vibroseis deconvolution make use of a correction that converts (on the correlated trace) the Klauder wavelet into its minimum-phase counterpart. The seismic wavelet, which is the convolution of the minimum-phase counterpart with the component minimum-phase wavelets, is then removed by spiking deconvolution. This means that spiking deconvolution removes both the constructed minimum-phase Klauder counterpart and the component minimum-phase wavelets. Here, a new method is proposed: instead of being converted to minimum phase, the Klauder wavelet is removed directly. The spiking deconvolution can then proceed unimpeded as in the case of a dynamite record. These results also hold for gap predictive deconvolution because gap deconvolution is a special case of spiking deconvolution in which the deconvolved trace is smoothed by the front part of the minimum-phase wavelet that was removed.  相似文献   

3.
We consider the problem of simultaneously estimating three parameters of multiple microseimic events, i.e., the hypocenter, moment tensor, and origin time. This problem is of great interest because its solution could provide a better understanding of reservoir behavior and can help to optimize the hydraulic fracturing process. The existing approaches employing spatial source sparsity have advantages over traditional full‐wave inversion‐based schemes; however, their validity and accuracy depend on the knowledge of the source time‐function, which is lacking in practical applications. This becomes even more challenging when multiple microseimic sources appear simultaneously. To cope with this shortcoming, we propose to approach the problem from a frequency‐domain perspective and develop a novel sparsity‐aware framework that is blind to the source time‐function. Through our simulation results with synthetic data, we illustrate that our proposed approach can handle multiple microseismic sources and can estimate their hypocenters with an acceptable accuracy. The results also show that our approach can estimate the normalized amplitude of the moment tensors as a by‐product, which can provide worthwhile information about the nature of the sources.  相似文献   

4.
地震子波处理的二步法反褶积方法研究   总被引:6,自引:11,他引:6       下载免费PDF全文
针对玛湖斜坡区三块三维地震资料和赛汉塔拉凹陷二块三维地震资料连片处理中的特点,结合地质任务和处理目标要求,提出了地震数据连片处理中的地震子波处理的方法.该方法主要体现了两次反褶积,一次是采用地表一致性反褶积,将不同震源的频带拓宽到一个标准上;再一次采用相位校正反褶积,将不同震源的数据校正到相同相位上.为了保证提取的相位校正反褶积算子稳定,采用叠后地震道提取(主要考虑到叠后地震道信噪比高,算子稳定性强),然后将该算子应用到叠前地震道,进行相位校正.  相似文献   

5.
Recently, new on‐shore acquisition designs have been presented with multi‐component sensors deployed in the shallow sub‐surface (20 m–60 m). Virtual source redatuming has been proposed for these data to compensate for surface statics and to enhance survey repeatability. In this paper, we investigate the feasibility of replacing the correlation‐based formalism that undergirds virtual source redatuming with multi‐dimensional deconvolution, offering various advantages such as the elimination of free‐surface multiples and the potential to improve virtual source repeatability. To allow for data‐driven calibration of the sensors and to improve robustness in cases with poor sensor spacing in the shallow sub‐surface (resulting in a relatively high wavenumber content), we propose a new workflow for this configuration. We assume a dense source sampling and target signals that arrive at near‐vertical propagation angles. First, the data are preconditioned by applying synthetic‐aperture‐source filters in the common receiver domain. Virtual source redatuming is carried out for the multi‐component recordings individually, followed by an intermediate deconvolution step. After this specific pre‐processing, we show that the downgoing and upgoing constituents of the wavefields can be separated without knowledge of the medium parameters, the source wavelet, or sensor characteristics. As a final step, free‐surface multiples can be eliminated by multi‐dimensional deconvolution of the upgoing fields with the downgoing fields.  相似文献   

6.
Jan F. Adamowski 《水文研究》2008,22(25):4877-4891
In this study, short‐term river flood forecasting models based on wavelet and cross‐wavelet constituent components were developed and evaluated for forecasting daily stream flows with lead times equal to 1, 3, and 7 days. These wavelet and cross‐wavelet models were compared with artificial neural network models and simple perseverance models. This was done using data from the Skrwa Prawa River watershed in Poland. Numerical analysis was performed on daily maximum stream flow data from the Parzen station and on meteorological data from the Plock weather station in Poland. Data from 1951 to 1979 was used to train the models while data from 1980 to 1983 was used to test the models. The study showed that forecasting models based on wavelet and cross‐wavelet constituent components can be used with great accuracy as a stand‐alone forecasting method for 1 and 3 days lead time river flood forecasting, assuming that there are no significant trends in the amplitude for the same Julian day year‐to‐year, and that there is a relatively stable phase shift between the flow and meteorological time series. It was also shown that forecasting models based on wavelet and cross‐wavelet constituent components for forecasting river floods are not accurate for longer lead time forecasting such as 7 days, with the artificial neural network models providing more accurate results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We use numerically modelled data sets to investigate the sensitivity of electromagnetic interferometry by multidimensional deconvolution to spatial receiver sampling. Interferometry by multidimensional deconvolution retrieves the reflection response below the receivers after decomposition of the fields into upward and downward decaying fields and deconvolving the upward decaying field by the downward decaying field. Thereby the medium above the receiver level is replaced with a homogeneous half‐space, the sources are redatumed to the receiver level and the direct field is removed. Consequently, in a marine setting the retrieved reflection response is independent of any effect of the water layer and the air above. A drawback of interferometry by multidimensional deconvolution is a possibly unstable matrix inversion, which is necessary to retrieve the reflection response. Additionally, in order to correctly separate the upward and the downward decaying fields, the electromagnetic fields need to be sampled properly. We show that the largest possible receiver spacing depends on two parameters: the vertical distance between the source and the receivers and the length of the source. The receiver spacing should not exceed the larger of these two parameters. Besides these two parameters, the presence of inhomogeneities close to the receivers may also require a dense receiver sampling. We show that by using the synthetic aperture concept, an elongated source can be created from conventionally acquired data in order to overcome these strict sampling criteria. Finally, we show that interferometry may work under real‐world conditions with random noise and receiver orientation and positioning errors.  相似文献   

8.
9.
Özgür Kişi 《水文研究》2008,22(20):4142-4152
This paper proposes the application of a neuro‐wavelet technique for modelling monthly stream flows. The neuro‐wavelet model is improved by combining two methods, discrete wavelet transform and multi‐layer perceptron, for one‐month‐ahead stream flow forecasting and results are compared with those of the single multi‐layer perceptron (MLP), multi‐linear regression (MLR) and auto‐regressive (AR) models. Monthly flow data from two stations, Gerdelli Station on Canakdere River and Isakoy Station on Goksudere River, in the Eastern Black Sea region of Turkey are used in the study. The comparison results revealed that the suggested model could increase the forecast accuracy and perform better than the MLP, MLR and AR models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A basic hypothesis is proposed: given that wavelet‐based analysis has been used to interpret runoff time‐series, it may be extended to evaluation of rainfall‐runoff model results. Conventional objective functions make certain assumptions about the data series to which they are applied (e.g. uncorrelated error, homoscedasticity). The difficulty that objective functions have in distinguishing between different realizations of the same model, or different models of the same system, is that they may have contributed in part to the occurrence of model equifinality. Of particular concern is the fact that the error present in a rainfall‐runoff model may be time dependent, requiring some form of time localization in both identification of error and derivation of global objective functions. We explore the use of a complex Gaussian (order 2) wavelet to describe: (1) a measured hydrograph; (2) the same hydrograph with different simulated errors introduced; and (3) model predictions of the same hydrograph based upon a modified form of TOPMODEL. The analysis of results was based upon: (a) differences in wavelet power (the wavelet power error) between the measured hydrograph and both the simulated error and modelled hydrographs; and (b) the wavelet phase. Power difference and wavelet phase were used to develop two objective functions, RMSE(power) and RMS(phase), which were shown to distinguish between simulated errors and model predictions with similar values of the commonly adopted Nash‐Sutcliffe efficiency index. These objective functions suffer because they do not retain time, frequency or time‐frequency localization. Consideration of wavelet power spectra and time‐ and frequency‐integrated power spectra shows that the impacts of different types of simulated error can be seen through retention of some localization, especially in relation to when and the scale over which error was manifest. Theoretical objections to the use of wavelet analysis for this type of application are noted, especially in relation to the dependence of findings upon the wavelet chosen. However, it is argued that the benefits of localization and the qualitatively low sensitivity of wavelet power and phase to wavelet choice are sufficient to warrant further exploration of wavelet‐based approaches to rainfall‐runoff model evaluation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A stochastic ground‐motion simulation and modification technique is developed to generate energy‐compatible and spectrum‐compatible (ECSC) synthetic motions through wavelet packet characterization and modification in both frequency and time domains. The ECSC method significantly advances traditional spectral matching approaches, because it generates ground motions that not only match the target spectral accelerations, but also match Arias intensity build‐up and significant durations. The great similarity between the ECSC simulated motions and the actual recorded motions is demonstrated through one‐to‐one comparison of a variety of intensity measures. Extensive numerical simulations were also performed to validate the performance of the ECSC ground motions through nonlinear analyses of elasto‐plastic oscillators. The ECSC method can be easily implemented in the generalized conditional intensity measure framework by directly simulating a set of motions following a targeted distribution of multiple intensity measures. Therefore, the ECSC method has great potential to be used in performance‐based earthquake design and analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
We investigate the influence of source wavelet errors on inversion‐based, surface‐related multiple attenuation, in order to address how the inverted primary impulse response, estimated primaries, and predicted multiples are affected by the estimated wavelet. In theory, errors in estimated wavelet can lead to errors in the upgoing waves. Because of smoothness and the band‐limitedness characteristics of the estimated wavelet, errors in the upgoing waves are usually not white and random. Theoretical analysis and two synthetic examples demonstrate that (i) when the overall amplitude scalar of the estimated wavelet is underestimated, the inversion of the primary impulse response suffers from instability, which will distort the estimation of primaries, and (ii) when the wavelet is overestimated, the estimated primaries will simply mimic the recorded upgoing waves. Nevertheless, the quality of the estimated primaries in the region above the first‐order, water‐bottom multiples is independent of the estimated wavelet. Synthetic results illustrate that inversion‐based, surface‐related multiple attenuation with a known wavelet is stable, since slight inaccuracy in amplitude spectrum and/or phase spectrum of the given wavelet or the corresponding upgoing waves will not lead to considerable deviation in the waveforms of the inverted results from those of the references. Furthermore, shot‐to‐shot wavelet variations, with maximum amplitude difference of 5% and maximum phase difference of 10°, create just slight artefacts in both the inverted primary impulse response and the estimated primaries. Moreover, the sensitivity test of estimation of primaries by sparse inversion method involving wavelet estimation shows that this method can stably and alternately update the wavelet and the primary impulse response; however, different choices of the initial wavelet can lead to different final inverted results.  相似文献   

13.
Wavelet estimation and well-tie procedures are important tasks in seismic processing and interpretation. Deconvolutional statistical methods to estimate the proper wavelet, in general, are based on the assumptions of the classical convolutional model, which implies a random process reflectivity and a minimum-phase wavelet. The homomorphic deconvolution, however, does not take these premises into account. In this work, we propose an approach to estimate the seismic wavelet using the advantages of the homomorphic deconvolution and the deterministic estimation of the wavelet, which uses both seismic and well log data. The feasibility of this approach is verified on well-to-seismic tie from a real data set from Viking Graben Field, North Sea, Norway. The results show that the wavelet estimated through this methodology produced a higher quality well tie when compared to methods of estimation of the wavelet that consider the classical assumptions of the convolutional model.  相似文献   

14.
We present a 2D inversion scheme for magnetotelluric data, where the conductivity structure is parameterised with different wavelet functions that are collected in a wavelet‐based dictionary. The inversion model estimate is regularised in terms of wavelet coefficient sparsity following the compressive sensing approach. However, when the model is expressed on the basis of a single wavelet family only, the geometrical appearance of model features reflects the shape of the wavelet functions. Combining two or more wavelet families in a dictionary provides greater flexibility to represent the model structure, permitting, for example, the simultaneous occurrence of smooth and sharp anomalies within the same model. We show that the application of the sparsity regularisation scheme with wavelet dictionaries provides the user with a number of different model classes that may explain the data to the same extent. For a real data example from the Dead Sea Transform, we show that the use of such a scheme can be beneficial to evaluate the geometries of conductivity anomalies and to understand the effect of regularisation on the model estimate.  相似文献   

15.
Multiridge Euler deconvolution   总被引:1,自引:0,他引:1  
Potential field interpretation can be carried out using multiscale methods. This class of methods analyses a multiscale data set, which is built by upward continuation of the original data to a number of altitudes conveniently chosen. Euler deconvolution can be cast into this multiscale environment by analysing data along ridges of potential fields, e.g., at those points along lines across scales where the field or its horizontal or vertical derivative respectively is zero. Previous work has shown that Euler equations are notably simplified along any of these ridges. Since a given anomaly may generate one or more ridges we describe in this paper how Euler deconvolution may be used to jointly invert data along all of them, so performing a multiridge Euler deconvolution. The method enjoys the stable and high‐resolution properties of multiscale methods, due to the composite upward continuation/vertical differentiation filter used. Such a physically‐based field transformation can have a positive effect on reducing both high‐wavenumber noise and interference or regional field effects. Multiridge Euler deconvolution can also be applied to the modulus of an analytic signal, gravity/magnetic gradient tensor components or Hilbert transform components. The advantages of using multiridge Euler deconvolution compared to single ridge Euler deconvolution include improved solution clustering, increased number of solutions, improvement of accuracy of the results obtainable from some types of ridges and greater ease in the selection of ridges to invert. The multiscale approach is particularly well suited to deal with non‐ideal sources. In these cases, our strategy is to find the optimal combination of upward continuation altitude range and data differentiation order, such that the field could be sensed as approximately homogeneous and then characterized by a structural index close to an integer value. This allows us to estimate depths related to the top or the centre of the structure.  相似文献   

16.
Signal to noise ratio (SNR) and resolution are two important but contradictory characteristics used to evaluate the quality of seismic data. For relatively preserving SNR while enhancing resolution, the signal purity spectrum is introduced, estimated, and used to define the desired output amplitude spectrum after deconvolution. Since a real reflectivity series is blue rather than white, the effects of white reflectivity hypothesis on wavelets are experimentally analyzed and color compensation is applied after spectrum whitening. Experiments on real seismic data indicate that the cascade of the two processing stages can improve the ability of seismic data to delineate the geological details.  相似文献   

17.
Fluid flow exerts a critical impact on the convection of thermal energy in geological media, whereas heat transport in turn affects fluid properties, including fluid dynamic viscosity and density. The interplay of flow and heat transport also affects solute transport. To unravel these complex coupled flow, heat, and solute transport processes, here, we present a theory for the idealized scale‐dependent Poiseuille flow model considering a constant temperature gradient (?T) along a single fracture, where fluid dynamic viscosity connects with temperature via an exponential function. The idealized scale‐dependent model is validated based on the solutions from direct numerical simulations. We find that the hydraulic conductivity (K) of the Poiseuille flow either increases or decreases with scales depending on ?T > 0°C/m or ?T < 0°C/m, respectively. Indeed, the degree of changes in K depends on the magnitude of ?T and fracture length. The scale‐dependent model provides an alternative explanation for the well‐known scale‐dependent transport problem, for example, the dispersion coefficient increases with travel distance when ?T > 0°C/m according to the Taylor dispersion theory, because K (or equivalently flux through fractures) scales with fracture length. The proposed theory unravels intertwined interactions between flow and transport processes, which might shed light on understanding many practical geophysical problems, for example, geothermal energy exploration.  相似文献   

18.
Ideally, traditional vibroseis processing produces a band-limited zero-phase Klauder wavelet through cross-correlation of the sweep with the recorded signal. An alternative wavelet processing method involves deconvolving the sweep from the recorded vibroseis trace. This deconvolution can be achieved through frequency-domain division. We compare and contrast the advantages and disadvantages of sweep deconvolution versus cross-correlation on synthetic and real data.  相似文献   

19.
非稳态地震稀疏约束反褶积研究(英文)   总被引:1,自引:1,他引:0  
传统Robinson褶积模型主要受缚于三种不合理的假设,即白噪反射系数、最小相位地震子波与稳态假设,而现代反射系数反演方法(如稀疏约束反褶积等)均在前两个假设上寻求突破的同时却忽视了一个重要事实:实际地震信号具有典型的非稳态特征,这直接冲击着反射系数反演中地震子波不随时间变化的这一基础性假设。本文首先通过实际反射系数测试证实,非稳态效应造成重要信息无法得到有效展现,且对深层影响尤为严重。为校正非稳态影响,本文从描述非稳态方面具有普适性的非稳态褶积模型出发,借助对数域的衰减曲线指导检测非稳态影响并以此实现对非稳态均衡与校正。与常规不同,本文利用对数域Gabor反褶积仅移除非稳态影响,而将分离震源子波和反射系数的任务交给具有更符合实际条件的稀疏约束反褶积处理,因此结合两种反褶积技术即可有效解决非稳态特征影响,又能避免反射系数和地震子波理想化假设的不利影响。海上地震资料的应用实际表明,校正非稳态影响有助于恢复更丰富的反射系数信息,使得与地质沉积和构造相关的细节特征得到更加清晰的展现。  相似文献   

20.
The time–frequency and the time‐scale analysis methods are used in this paper to identify the dynamic characteristics of non‐linear seismic response of structural systems with single degree of freedom (SDOF) and multiple degrees of freedom (MDOF). Based on the floor acceleration response time histories of bi‐linear SDOF and MDOF structures, the current study compares the results of system identification using the short‐time Fourier transform (STFT), continuous wavelet transform (CWT) and discrete wavelet transform (DWT) methods. The aim is to identify the frequency variations and the time at on‐set of yielding and unloading of a bi‐linear structural system during seismic response. The results demonstrate that the CWT method is better than the STFT method in both time and frequency resolutions, and that the DWT method is the best at detecting the time at on‐set of yielding and unloading. Combining the results of CWT and DWT methods therefore provides accurate information of both frequency variations and yielding time in non‐linear seismic response. To alleviate the problems associated with noise‐contaminated signals, e.g. seismic response data recorded on site, the study suggests that low‐pass filtering be carried out before applying the DWT method to decompose the signals into multiple levels of details. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号