首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Full‐waveform inversion is re‐emerging as a powerful data‐fitting procedure for quantitative seismic imaging of the subsurface from wide‐azimuth seismic data. This method is suitable to build high‐resolution velocity models provided that the targeted area is sampled by both diving waves and reflected waves. However, the conventional formulation of full‐waveform inversion prevents the reconstruction of the small wavenumber components of the velocity model when the subsurface is sampled by reflected waves only. This typically occurs as the depth becomes significant with respect to the length of the receiver array. This study first aims to highlight the limits of the conventional form of full‐waveform inversion when applied to seismic reflection data, through a simple canonical example of seismic imaging and to propose a new inversion workflow that overcomes these limitations. The governing idea is to decompose the subsurface model as a background part, which we seek to update and a singular part that corresponds to some prior knowledge of the reflectivity. Forcing this scale uncoupling in the full‐waveform inversion formalism brings out the transmitted wavepaths that connect the sources and receivers to the reflectors in the sensitivity kernel of the full‐waveform inversion, which is otherwise dominated by the migration impulse responses formed by the correlation of the downgoing direct wavefields coming from the shot and receiver positions. This transmission regime makes full‐waveform inversion amenable to the update of the long‐to‐intermediate wavelengths of the background model from the wide scattering‐angle information. However, we show that this prior knowledge of the reflectivity does not prevent the use of a suitable misfit measurement based on cross‐correlation, to avoid cycle‐skipping issues as well as a suitable inversion domain as the pseudo‐depth domain that allows us to preserve the invariant property of the zero‐offset time. This latter feature is useful to avoid updating the reflectivity information at each non‐linear iteration of the full‐waveform inversion, hence considerably reducing the computational cost of the entire workflow. Prior information of the reflectivity in the full‐waveform inversion formalism, a robust misfit function that prevents cycle‐skipping issues and a suitable inversion domain that preserves the seismic invariant are the three key ingredients that should ensure well‐posedness and computational efficiency of full‐waveform inversion algorithms for seismic reflection data.  相似文献   

2.
We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village ?achtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.  相似文献   

3.
This paper compares three alternative algorithms for simultaneously estimating a source wavelet at the same time as an earth model in full‐waveform inversion: (i) simultaneous descent, (ii) alternating descent and (iii) descent with the variable projection method. The latter is a technique for solving separable least‐squares problems that is well‐known in the applied mathematics literature. When applied to full‐waveform inversion, it involves making the source wavelet an implicit function of the earth model via a least‐squares filter‐estimation process. Since the source wavelet becomes purely a function of medium parameters, it no longer needs to be treated as a separate unknown in the inversion. Essentially, the predicted data are projected onto the measured data in a least‐squares sense at every function evaluation, making use of the fact that the filter estimation problem is trivial when compared to the full‐waveform inversion problem. Numerical tests on a simple 1D model indicate that the variable projection method gives the best result; actually producing results in quality that are very similar to control experiments with a known, correct wavelet.  相似文献   

4.
We have previously applied three‐dimensional acoustic, anisotropic, full‐waveform inversion to a shallow‐water, wide‐angle, ocean‐bottom‐cable dataset to obtain a high‐resolution velocity model. This velocity model produced an improved match between synthetic and field data, better flattening of common‐image gathers, a closer fit to well logs, and an improvement in the pre‐stack depth‐migrated image. Nevertheless, close examination reveals that there is a systematic mismatch between the observed and predicted data from this full‐waveform inversion model, with the predicted data being consistently delayed in time. We demonstrate that this mismatch cannot be produced by systematic errors in the starting model, by errors in the assumed source wavelet, by incomplete convergence, or by the use of an insufficiently fine finite‐difference mesh. Throughout these tests, the mismatch is remarkably robust with the significant exception that we do not see an analogous mismatch when inverting synthetic acoustic data. We suspect therefore that the mismatch arises because of inadequacies in the physics that are used during inversion. For ocean‐bottom‐cable data in shallow water at low frequency, apparent observed arrival times, in wide‐angle turning‐ray data, result from the characteristics of the detailed interference pattern between primary refractions, surface ghosts, and a large suite of wide‐angle multiple reflected and/or multiple refracted arrivals. In these circumstances, the dynamics of individual arrivals can strongly influence the apparent arrival times of the resultant compound waveforms. In acoustic full‐waveform inversion, we do not normally know the density of the seabed, and we do not properly account for finite shear velocity, finite attenuation, and fine‐scale anisotropy variation, all of which can influence the relative amplitudes of different interfering arrivals, which in their turn influence the apparent kinematics. Here, we demonstrate that the introduction of a non‐physical offset‐variable water density during acoustic full‐waveform inversion of this ocean‐bottom‐cable field dataset can compensate efficiently and heuristically for these inaccuracies. This approach improves the travel‐time match and consequently increases both the accuracy and resolution of the final velocity model that is obtained using purely acoustic full‐waveform inversion at minimal additional cost.  相似文献   

5.
In seismic waveform inversion, non‐linearity and non‐uniqueness require appropriate strategies. We formulate four types of L2 normed misfit functionals for Laplace‐Fourier domain waveform inversion: i) subtraction of complex‐valued observed data from complex‐valued predicted data (the ‘conventional phase‐amplitude’ residual), ii) a ‘conventional phase‐only’ residual in which amplitude variations are normalized, iii) a ‘logarithmic phase‐amplitude’ residual and finally iv) a ‘logarithmic phase‐only’ residual in which the only imaginary part of the logarithmic residual is used. We evaluate these misfit functionals by using a wide‐angle field Ocean Bottom Seismograph (OBS) data set with a maximum offset of 55 km. The conventional phase‐amplitude approach is restricted in illumination and delineates only shallow velocity structures. In contrast, the other three misfit functionals retrieve detailed velocity structures with clear lithological boundaries down to the deeper part of the model. We also test the performance of additional phase‐amplitude inversions starting from the logarithmic phase‐only inversion result. The resulting velocity updates are prominent only in the high‐wavenumber components, sharpening the lithological boundaries. We argue that the discrepancies in the behaviours of the misfit functionals are primarily caused by the sensitivities of the model gradient to strong amplitude variations in the data. As the observed data amplitudes are dominated by the near‐offset traces, the conventional phase‐amplitude inversion primarily updates the shallow structures as a result. In contrast, the other three misfit functionals eliminate the strong dependence on amplitude variation naturally and enhance the depth of illumination. We further suggest that the phase‐only inversions are sufficient to obtain robust and reliable velocity structures and the amplitude information is of secondary importance in constraining subsurface velocity models.  相似文献   

6.
Velocity model building and impedance inversion generally suffer from a lack of intermediate wavenumber content in seismic data. Intermediate wavenumbers may be retrieved directly from seismic data sets if enough low frequencies are recorded. Over the past years, improvements in acquisition have allowed us to obtain seismic data with a broader frequency spectrum. To illustrate the benefits of broadband acquisition, notably the recording of low frequencies, we discuss the inversion of land seismic data acquired in Inner Mongolia, China. This data set contains frequencies from 1.5–80 Hz. We show that the velocity estimate based on an acoustic full‐waveform inversion approach is superior to one obtained from reflection traveltime inversion because after full‐waveform inversion the background velocity conforms to geology. We also illustrate the added value of low frequencies in an impedance estimate.  相似文献   

7.
A seismic variant of the distorted Born iterative inversion method, which is commonly used in electromagnetic and acoustic (medical) imaging, has been recently developed on the basis of the T‐matrix approach of multiple scattering theory. The distorted Born iterative method is consistent with the Gauss–Newton method, but its implementation is different, and there are potentially significant computational advantages of using the T‐matrix approach in this context. It has been shown that the computational cost associated with the updating of the background medium Green functions after each iteration can be reduced via the use of various linearisation or quasi‐linearisation techniques. However, these techniques for reducing the computational cost may not work well in the presence of strong contrasts. To deal with this, we have now developed a domain decomposition method, which allows one to decompose the seismic velocity model into an arbitrary number of heterogeneous domains that can be treated separately and in parallel. The new domain decomposition method is based on the concept of a scattering‐path matrix, which is well known in solid‐state physics. If the seismic model consists of different domains that are well separated (e.g., different reservoirs within a sedimentary basin), then the scattering‐path matrix formulation can be used to derive approximations that are sufficiently accurate but far more speedy and much less memory demanding because they ignore the interaction between different domains. However, we show here that one can also use the scattering‐path matrix formulation to calculate the overall T‐matrix for a large model exactly without any approximations at a computational cost that is significantly smaller than the cost associated with an exact formal matrix inversion solution. This is because we have derived exact analytical results for the special case of two interacting domains and combined them with Strassen's formulas for fast recursive matrix inversion. To illustrate the fact that we have accelerated the T‐matrix approach to full‐waveform inversion by domain decomposition, we perform a series of numerical experiments based on synthetic data associated with a complex salt model and a simpler two‐dimensional model that can be naturally decomposed into separate upper and lower domains. If the domain decomposition method is combined with an additional layer of multi‐scale regularisation (based on spatial smoothing of the sensitivity matrix and the data residual vector along the receiver line) beyond standard sequential frequency inversion, then one apparently can also obtain stable inversion results in the absence of ultra‐low frequencies and reduced computation times.  相似文献   

8.
变密度声波方程多参数全波形反演策略   总被引:1,自引:3,他引:1       下载免费PDF全文
多参数全波形反演中各参数之间的相互耦合增加了反演的非线性程度.通过分析各参数之间的相互影响,提出合理的多参数反演策略是解决该问题的有效途径.本文从变密度声波方程出发,首先研究了密度在速度反演中的重要作用,然后分析了速度对密度反演的影响程度,进而提出了一种有利于速度、密度分步联合反演的策略.第一步,利用给定的初始模型对速度、密度进行同时反演,得到比较可靠的速度反演结果;第二步,利用第一步反演得到的速度和给定的初始密度作为初始模型,继续进行双参数同时反演,这样可以同时得到比较可靠的速度、密度反演结果.为了进一步提高反演精度,将第二步反演得到的速度、密度作为初始模型,再进行下一轮双参数联合反演.二维理论模型实验结果充分说明了本文提出的这种反演策略的有效性.  相似文献   

9.
速度、密度之间的相互耦合使得密度在多参数全波形反演中较难获得.本文将截断高斯-牛顿法用于声介质速度、密度双参数全波形反演,通过考虑近似Hessian矩阵中反映速度、密度相互作用的非主对角块元素,有效解决了多参数全波形反演中速度、密度之间的耦合问题,在不采用反演策略的情况下,仍能够获得精度较高的速度、密度反演结果.常规的截断牛顿类全波形反演通常利用一阶伴随状态法求取目标函数对模型参数的梯度,利用二阶伴随状态法或有限差分法求解Hessian-向量乘,在每一步内循环迭代过程中需要额外求解两次正演问题,计算量较大.本文基于Born近似,将梯度计算中的核函数-向量乘表示为具有明确物理意义的向量-标量乘的累加运算,同时将Hessian-向量乘转化为两次核函数-向量乘,无需额外求解正演问题,有效降低了计算量.数值实验证明了本文提出的方法的有效性.  相似文献   

10.
Full waveform inversion for reflection events is limited by its linearised update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model and, thus, use a gradient given by the oriented time‐domain imaging method. Specifically, we apply the oriented time‐domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to two‐dimensional or three‐dimensional velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearised representations of the reflection response. To eliminate the crosstalk artifacts between different parameters, we utilise what we consider being an optimal parametrisation for this step. To do so, we extend the prestack time‐domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high‐wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.  相似文献   

11.
Stochastic optimization methods, such as genetic algorithms, search for the global minimum of the misfit function within a given parameter range and do not require any calculation of the gradients of the misfit surfaces. More importantly, these methods collect a series of models and associated likelihoods that can be used to estimate the posterior probability distribution. However, because genetic algorithms are not a Markov chain Monte Carlo method, the direct use of the genetic‐algorithm‐sampled models and their associated likelihoods produce a biased estimation of the posterior probability distribution. In contrast, Markov chain Monte Carlo methods, such as the Metropolis–Hastings and Gibbs sampler, provide accurate posterior probability distributions but at considerable computational cost. In this paper, we use a hybrid method that combines the speed of a genetic algorithm to find an optimal solution and the accuracy of a Gibbs sampler to obtain a reliable estimation of the posterior probability distributions. First, we test this method on an analytical function and show that the genetic algorithm method cannot recover the true probability distributions and that it tends to underestimate the true uncertainties. Conversely, combining the genetic algorithm optimization with a Gibbs sampler step enables us to recover the true posterior probability distributions. Then, we demonstrate the applicability of this hybrid method by performing one‐dimensional elastic full‐waveform inversions on synthetic and field data. We also discuss how an appropriate genetic algorithm implementation is essential to attenuate the “genetic drift” effect and to maximize the exploration of the model space. In fact, a wide and efficient exploration of the model space is important not only to avoid entrapment in local minima during the genetic algorithm optimization but also to ensure a reliable estimation of the posterior probability distributions in the subsequent Gibbs sampler step.  相似文献   

12.
Full waveform inversion aims to use all information provided by seismic data to deliver high-resolution models of subsurface parameters. However, multiparameter full waveform inversion suffers from an inherent trade-off between parameters and from ill-posedness due to the highly non-linear nature of full waveform inversion. Also, the models recovered using elastic full waveform inversion are subject to local minima if the initial models are far from the optimal solution. In addition, an objective function purely based on the misfit between recorded and modelled data may honour the seismic data, but disregard the geological context. Hence, the inverted models may be geologically inconsistent, and not represent feasible lithological units. We propose that all the aforementioned difficulties can be alleviated by explicitly incorporating petrophysical information into the inversion through a penalty function based on multiple probability density functions, where each probability density function represents a different lithology with distinct properties. We treat lithological units as clusters and use unsupervised K-means clustering to separate the petrophysical information into different units of distinct lithologies that are not easily distinguishable. Through several synthetic examples, we demonstrate that the proposed framework leads full waveform inversion to elastic models that are superior to models obtained either without incorporating petrophysical information, or with a probabilistic penalty function based on a single probability density function.  相似文献   

13.
为了提高表层速度反演精度,本文提出了一种新的波形反演方法.该方法只利用初至波波形信息以减少波形反演对初始模型的依赖性,降低反演多解性与稳定性.由于只利用初至波波形信息,所以该方法利用高斯束计算格林函数和正演波场,以减少正演计算量.为了避免庞大核函数的存储,该方法基于Born波路径,利用矩阵分解算法实现方向与步长的累加计算.将此基于Born波路径的初至波波形反演方法应用于理论模型实验,并与声波方程全波形反演和初至波射线走时层析方法相对比,发现该方法的反演效果略低于全波形反演方法,但明显优于传统初至波射线走时层析方法,而计算效率却与射线走时层析相当.同时,相对于全波形反演,本文方法对初始模型的依赖性也有所降低.  相似文献   

14.
Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components contained in an envelope of seismic data. Although the new method can recover the main structure of the model, the inversion quality of the model bottom still needs to be improved. Reflection waveform inversion reduces the dependence of inversion on low‐frequency and long‐offset data by using travel‐time information in reflected waves. However, when the underground medium contains strong contrast or the initial model is far away from the true model, it is hard to get reliable reference reflectors for the generation of reflected waves. Here, we propose a combination inversion algorithm, i.e., reflection multi‐scale envelope inversion, to overcome the limitations of multi‐scale envelope inversion and reflection waveform inversion. First, wavefield decomposition was introduced into the multi‐scale envelope inversion to improve the inversion quality of the long‐wavelength components of the model. Then, after the initial model had been established to be accurate enough, migration and de‐migration were introduced to achieve multi‐scale reflection waveform inversion. The numerical results of the salt‐layer model and the SEG/EAGE salt model verified the validity of the proposed approach and its potential.  相似文献   

15.
To simulate the seismic signals that are obtained in a marine environment, a coupled system of both acoustic and elastic wave equations is solved. The acoustic wave equation for the fluid region simulates the pressure field while minimizing the number of degrees of freedom of the impedance matrix, and the elastic wave equation for the solid region simulates several elastic events, such as shear waves and surface waves. Moreover, by combining this coupled approach with the waveform inversion technique, the elastic properties of the earth can be inverted using the pressure data obtained from the acoustic region. However, in contrast to the pure acoustic and elastic cases, the complex impedance matrix for the coupled media does not have a symmetric form because of the boundary (continuity) condition at the interface between the acoustic and elastic elements. In this study, we propose a manipulation scheme that makes the complex impedance matrix for acoustic–elastic coupled media to take a symmetric form. Using the proposed symmetric matrix, forward and backward wavefields are identical to those generated by the conventional approach; thus, we do not lose any accuracy in the waveform inversion results. However, to solve the modified symmetric matrix, LDLT factorization is used instead of LU factorization for a matrix of the same size; this method can mitigate issues related to severe memory insufficiency and long computation times, particularly for large‐scale problems.  相似文献   

16.
The main objective of this work is to establish the applicability of shallow surface‐seismic traveltime tomography in basalt‐covered areas. A densely sampled ~1300‐m long surface seismic profile, acquired as part of the SeiFaBa project in 2003 ( Japsen et al. 2006 ) at Glyvursnes in the Faroe Islands, served as the basis to evaluate the performance of the tomographic method in basalt‐covered areas. The profile is centred at a ~700‐m deep well. VP, VS and density logs, a zero‐offset VSP, downhole‐geophone recordings and geological mapping in the area provided good means of control. The inversion was performed with facilities of the Wide Angle Reflection/Refraction Profiling program package ( Ditmar et al. 1999 ). We tested many inversion sequences while varying the inversion parameters. Modelled traveltimes were verified by full‐waveform modelling. Typically an inversion sequence consists in several iterations that proceed until a satisfactory solution is reached. However, in the present case with high velocity contrasts in the subsurface we obtained the best result with two iterations: first obtaining a smooth starting model with small traveltime residuals by inverting with a high smoothing constraint and then inverting with the lowest possible smoothing constraint to allow the inversion to have the full benefit of the traveltime residuals. The tomogram gives usable velocity information for the near‐surface geology in the area but fails to reproduce the expected velocity distribution of the layered basalt flows. Based on the analysis of the tomogram and geological mapping in the area, a model was defined that correctly models first arrivals from both surface seismic data and downhole‐geophone data.  相似文献   

17.
Borehole seismic addresses the need for high‐resolution images and elastic parameters of the subsurface. Full‐waveform inversion of vertical seismic profile data is a promising technology with the potential to recover quantitative information about elastic properties of the medium. Full‐waveform inversion has the capability to process the entire wavefield and to address the wave propagation effects contained in the borehole data—multi‐component measurements; anisotropic effects; compressional and shear waves; and transmitted, converted, and reflected waves and multiples. Full‐waveform inversion, therefore, has the potential to provide a more accurate result compared with conventional processing methods. We present a feasibility study with results of the application of high‐frequency (up to 60 Hz) anisotropic elastic full‐waveform inversion to a walkaway vertical seismic profile data from the Arabian Gulf. Full‐waveform inversion has reproduced the majority of the wave events and recovered a geologically plausible layered model with physically meaningful values of the medium.  相似文献   

18.
采用弹性波全波形反演方法精确重建深部金属矿多参数模型,建模过程采用基于地震照明的反演策略.首先给出基于照明理论的观测系统可视性定义,利用可视性分析构建新的目标函数,对反演目标可视性较高的炮检对接收到的地震记录在波场匹配时占有更高的权重,确保了参与反演计算中的地震数据的有效性;其次将给定观测系统对地下介质的弹性波场照明强度作为优化因子,根据地震波在波阻抗界面处的能量分配特点,自适应补偿波场能量分布和优化速度梯度,以提高弹性波全波形反演过程的稳定性和反演结果的精度.理论模型和金属矿模型反演试验结果表明,基于可视性分析和能量补偿的反演策略可以使弹性波全波形反演更快地收敛到目标函数的全局极小值,获得适用于金属矿高分辨率地震偏移成像的多参数模型.  相似文献   

19.

基于L2范数的常规全波形反演目标函数是一个强非线性泛函,在反演过程中容易陷入局部极小值.本文提出归一化能量谱目标函数来缓解全波形反演过程中的强非线性问题,同时能够有效地缓解噪声和震源子波不准等因素的影响.能量谱目标函数是通过匹配观测数据与模拟数据随频率分布的能量信息来实现最小二乘反演的,其忽略了地震数据波形与相位变化的细节特征,这在反演的过程中能够有效缓解波形匹配错位等问题.数值测试结果表明,基于归一化能量谱目标函数在构建初始速度模型、抗噪性和缓解震源子波依赖等方面都优于归一化全波形反演目标函数.金属矿模型测试结果表明,即使地震数据缺失低频分量,基于归一化能量谱目标函数的全波形反演方法在像金属矿这样的强散射介质反演问题上同样具有一定的优势.

  相似文献   

20.

多震源编码技术可以提高全波形反演的计算效率,但同时会引入串扰噪声使反演结果质量降低. 全变分约束可以有效地压制层内噪声并突出模型界面,其与多震源技术的结合,能在大大提高弹性波全波形反演效率的同时提高反演质量. 本文提出了一种高效的动态多震源全波形反演策略,可以在离散串扰噪声的同时保证照明的均匀性. 根据残留串扰噪声的分布特征,构建了与之匹配的基于各向异性全变分约束的弹性波全波形反演方法. 为了减少周期跳跃效应,将基于稀疏约束的低频重构算法应用于弹性波地震记录,给出了利用快速梯度投影算法求解各向异性全变分约束的全波形反演流程. 模型数据测试结果表明本文的方法不仅能有效地抑制多震源方法导致的串扰噪声,同时也能降低观测数据中的噪声对反演结果的影响.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号