首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of particular concern in the monitoring of gas injection for the purposes of storage, disposal or improved oil recovery is the exact spatial distribution of the gas volumes in the subsurface. In principle this requirement is addressed by the use of 4D seismic data, although it is recognized that the seismic response still largely provides a qualitative estimate of moved subsurface fluids. Exact quantitative evaluation of fluid distributions and associated saturations remains a challenge to be solved. Here, an attempt has been made to produce mapped quantitative estimates of the gas volume injected into a clastic reservoir. Despite good results using three accurately repeated seismic surveys, time‐delay and amplitude attributes reveal fine‐scale differences though large‐scale agreement in the estimated fluid movement. These differences indicate disparities in the nature of the two attributes themselves, which can be explained by several possible causes. Of most impact are the effects of processing and migration, wave interference effects and noise from non‐repeatability of the seismic surveys. This subject highlights the need for a more careful consideration in 4D acquisition, amplitude processing and use of true amplitude preserving attributes in quantitative interpretation.  相似文献   

2.
The injection of CO2 at the Ketzin pilot CO2 storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO2 was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO2. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO2 plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO2 plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO2 plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO2 dissolution, and CO2 migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO2 after the second repeat survey and the CO2 migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO2 mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.  相似文献   

3.
We reformulate the original model of Hatchell and Bourne and Røste, Stovas and Landrø that couples fractional velocity change to subsurface strain via a fundamental constant R. The new model combines elastic compressibility of a dual‐porosity system for a sand–shale mixture with horizontal planes of inter‐granular weakness. The majority of observed R‐factor magnitudes from post‐stack 4D seismic data in both the reservoir and overburden can thus be explained. R is predicted to depend strongly on lithology and also initial strain state. The model is also extended to predict the observed angle‐dependence of time‐lapse time‐shifts from pre‐stack data. An expression for the gradient of time‐shift with incidence angle is obtained in terms of the background VP/VS, and also the ratio of tangential to normal compliances BT/BN representing loss or creation of inter‐granular coupling. If accurately estimated from data, this compliance ratio can be used as an additional parameter to assess the post‐production state of the overburden. It is concluded that whilst R remains the over‐arching parameter controlling the magnitude of time‐shifts measured from 4D seismic data, BT/BN is a subtler parameter that may also prove of future value.  相似文献   

4.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

5.
To study the impact of modern coal mining on the overlying formation, a full‐life‐cycle four‐dimensional seismic monitoring study has been carried out. Four seismic data campaigns have been performed using flexi‐bin geometry with square bins, with total duration of 171 days. The four seismic datasets have been processed with the same processing workflow and parameters; major problems such as statics correction, signal‐to‐noise ratio, resolution, and consistency processing are addressed taking into account the geological features of the research area. This guarantees that remaining four‐dimensional differences between the time‐lapse datasets show mostly geological factors due to the coal mining and effects such as surface subsidence. Our four‐dimensional seismic monitoring of modern coal mining shows that mined and unmined areas have significant zoning characteristics; coal mining has a direct impact on the overlying formation. The mining leads to obvious event subsidence, which reflects that overlying formations undergo subsidence during the mining process. The overlying formation appears as two zones called caving zone and fractured zone. We determine the fault dip of the overlying formation at one end of the working face to be 56°or so by calculation and conversion. We also see that, during the coal mining process, over time, the overlying formation has a self‐recovery capability, which gradually strengthens from the roof siltstone upward to the Aeolian sandstone near the surface. The stability of 20‐m coal pillars between working faces displays a strengthening trend and remains safe during the mining process due to both coal seam supporting and formation compaction effects.  相似文献   

6.
In this work, we tackle the challenge of quantitative estimation of reservoir dynamic property variations during a period of production, directly from four-dimensional seismic data in the amplitude domain. We employ a deep neural network to invert four-dimensional seismic amplitude maps to the simultaneous changes in pressure, water and gas saturations. The method is applied to a real field data case, where, as is common in such applications, the data measured at the wells are insufficient for properly training deep neural networks, thus, the network is trained on synthetic data. Training on synthetic data offers much freedom in designing a training dataset, therefore, it is important to understand the impact of the data distribution on the inversion results. To define the best way to construct a synthetic training dataset, we perform a study on four different approaches to populating the training set making remarks on data sizes, network generality and the impact of physics-based constraints. Using the results of a reservoir simulation model to populate our training datasets, we demonstrate the benefits of restricting training samples to fluid flow consistent combinations in the dynamic reservoir property domain. With this the network learns the physical correlations present in the training set, incorporating this information into the inference process, which allows it to make inferences on properties to which the seismic data are most uncertain. Additionally, we demonstrate the importance of applying regularization techniques such as adding noise to the synthetic data for training and show a possibility of estimating uncertainties in the inversion results by training multiple networks.  相似文献   

7.
基于弥散-黏滞型波动方程的地震波衰减及延迟分析   总被引:2,自引:1,他引:2       下载免费PDF全文
地震波的衰减、储层中的流体预测和4D流体监测技术是目前石油地球物理勘探领域十分有价值的热门研究课题.该文在基于一维弥散-黏滞型波动方程正演的基础上,根据含流体地层的弥散性与黏滞性,研究和模拟含流体地层对地震波的吸收衰减特征、低频伴影现象及其在流体预测中的应用;同时,模拟和分析了地震波在含流体地层中传播而导致的延迟特征.这些特征的检测与解释方法,为基于实际地震资料的储层流体预测及4D油气田开发监测提供技术思路与有效方法.  相似文献   

8.
Seismic conditioning of static reservoir model properties such as porosity and lithology has traditionally been faced as a solution of an inverse problem. Dynamic reservoir model properties have been constrained by time‐lapse seismic data. Here, we propose a methodology to jointly estimate rock properties (such as porosity) and dynamic property changes (such as pressure and saturation changes) from time‐lapse seismic data. The methodology is based on a full Bayesian approach to seismic inversion and can be divided into two steps. First we estimate the conditional probability of elastic properties and their relative changes; then we estimate the posterior probability of rock properties and dynamic property changes. We apply the proposed methodology to a synthetic reservoir study where we have created a synthetic seismic survey for a real dynamic reservoir model including pre‐production and production scenarios. The final result is a set of point‐wise probability distributions that allow us to predict the most probable reservoir models at each time step and to evaluate the associated uncertainty. Finally we also show an application to real field data from the Norwegian Sea, where we estimate changes in gas saturation and pressure from time‐lapse seismic amplitude differences. The inverted results show the hydrocarbon displacement at the times of two repeated seismic surveys.  相似文献   

9.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   

10.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   

11.
Scattering theory, a form of perturbation theory, is a framework from within which time‐lapse seismic reflection methods can be derived and understood. It leads to expressions relating baseline and monitoring data and Earth properties, focusing on differences between these quantities as it does so. The baseline medium is, in the language of scattering theory, the reference medium and the monitoring medium is the perturbed medium. The general scattering relationship between monitoring data, baseline data, and time‐lapse Earth property changes is likely too complex to be tractable. However, there are special cases that can be analysed for physical insight. Two of these cases coincide with recognizable areas of applied reflection seismology: amplitude versus offset modelling/inversion, and imaging. The main result of this paper is a demonstration that time‐lapse difference amplitude versus offset modelling, and time‐lapse difference data imaging, emerge from a single theoretical framework. The time‐lapse amplitude versus offset case is considered first. We constrain the general time‐lapse scattering problem to correspond with a single immobile interface that separates a static overburden from a target medium whose properties undergo time‐lapse changes. The scattering solutions contain difference‐amplitude versus offset expressions that (although presently acoustic) resemble the expressions of Landro ( 2001 ). In addition, however, they contain non‐linear corrective terms whose importance becomes significant as the contrasts across the interface grow. The difference‐amplitude versus offset case is exemplified with two parameter acoustic (bulk modulus and density) and anacoustic (P‐wave velocity and quality factor Q) examples. The time‐lapse difference data imaging case is considered next. Instead of constraining the structure of the Earth volume as in the amplitude versus offset case, we instead make a small‐contrast assumption, namely that the time‐lapse variations are small enough that we may disregard contributions from beyond first order. An initial analysis, in which the case of a single mobile boundary is examined in 1D, justifies the use of a particular imaging algorithm applied directly to difference data shot records. This algorithm, a least‐squares, shot‐profile imaging method, is additionally capable of supporting a range of regularization techniques. Synthetic examples verify the applicability of linearized imaging methods of the difference image formation under ideal conditions.  相似文献   

12.
A review and analysis of post-stack time-lapse time-shifts has been carried out that covers published literature supplemented by in-house datasets available to the authors. Time-shift data are classified into those originating from geomechanical effects and those due to fluid saturation changes. From these data, conclusions are drawn regarding the effectiveness of post-stack time-shifts for overburden and reservoir monitoring purposes. A variety of field examples are shown that display the range and magnitude of variation for each class of application. The underlying physical mechanisms creating these time-shifts are then described, and linked to a series of generic and field-specific rock physics calculations that predict their magnitudes. These calculations serve as a guide for practitioners wishing to utilize this information on their own datasets. Conclusions are drawn regarding the reliability of this attribute for monitoring purposes, and the extent to which further development is required and how it should be reported by authors.  相似文献   

13.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

14.
The estimation of time-lapse time shifts between two, or several, repeated seismic surveys has become increasingly popular over the past eighteen years. These time shifts are a reliable and informative seismic attribute that can relate to reservoir production. Correction for these time shifts or the underlying velocity perturbations and/or subsurface displacement in an imaging sense also permits accurate evaluation of time-lapse amplitudes by attempting to decouple the kinematic component. To date, there are approximately thirty methods for time-shift estimation described in the literature. We can group these methods into three main families of mathematical development, together with several miscellaneous techniques. Here we detail the underlying bases for these methods, and the acknowledged benefits and weaknesses of each class of method highlighted. We illustrate this review with a number of time-lapse seismic examples from producing fields. No method is necessarily superior to the others, as its selection depends on ease of implementation, noise characteristics of the field data, and whether the inherent assumptions suit the case in question. However, cross-correlation stands out as the algorithm of choice based on the Pareto principle and waveform inversion the algorithm delivering best resolution. This is a companion study to the previous review of time-shift magnitudes and a discussion of their rock physics basis.  相似文献   

15.
The frequent time‐lapse observations from the life of field seismic system across the Valhall field provide a wealth of information. The responses from the production and injection wells can be observed through time‐shift and amplitude changes. These observations can be compared to modelled synthetic seismic responses from a reservoir simulation model of the Valhall Field. The observed differences between the observations and the modelling are used to update and improve the history match of the reservoir model. The uncertainty of the resulting model is reduced and a more confident prediction of future reservoir performance is provided. A workflow is presented to convert the reservoir model to a synthetic seismic response and compare the results to the observed time‐lapse responses for any time range and area of interest. Correlation based match quality factors are calculated to quantify the visual differences. This match quality factor allows us to quantitatively compare alternative reservoir models to help identify the parameters that best match the seismic observations. Three different case studies are shown where this workflow has helped to reduce the uncertainty range associated with specific reservoir parameters. By updating various reservoir model parameters we have been able to improve the match to the observations and thereby improve the overall reservoir model predictability. The examples show positive results in a range of different reservoir modelling issues, which indicates the flexibility of this workflow and the ability to have an impact in most reservoir modelling challenges.  相似文献   

16.
Updating of reservoir models by history matching of 4D seismic data along with production data gives us a better understanding of changes to the reservoir, reduces risk in forecasting and leads to better management decisions. This process of seismic history matching requires an accurate representation of predicted and observed data so that they can be compared quantitatively when using automated inversion. Observed seismic data is often obtained as a relative measure of the reservoir state or its change, however. The data, usually attribute maps, need to be calibrated to be compared to predictions. In this paper we describe an alternative approach where we normalize the data by scaling to the model data in regions where predictions are good. To remove measurements of high uncertainty and make normalization more effective, we use a measure of repeatability of the monitor surveys to filter the observed time‐lapse data. We apply this approach to the Nelson field. We normalize the 4D signature based on deriving a least squares regression equation between the observed and synthetic data which consist of attributes representing measured acoustic impedances and predictions from the model. Two regression equations are derived as part of the analysis. For one, the whole 4D signature map of the reservoir is used while in the second, 4D seismic data is used from the vicinity of wells with a good production match. The repeatability of time‐lapse seismic data is assessed using the normalized root mean square of measurements outside of the reservoir. Where normalized root mean square is high, observations and predictions are ignored. Net: gross and permeability are modified to improve the match. The best results are obtained by using the normalized root mean square filtered maps of the 4D signature which better constrain normalization. The misfit of the first six years of history data is reduced by 55 per cent while the forecast of the following three years is reduced by 29 per cent. The well based normalization uses fewer data when repeatability is used as a filter and the result is poorer. The value of seismic data is demonstrated from production matching only where the history and forecast misfit reductions are 45% and 20% respectively while the seismic misfit increases by 5%. In the best case using seismic data, it dropped by 6%. We conclude that normalization with repeatability based filtering is a useful approach in the absence of full calibration and improves the reliability of seismic data.  相似文献   

17.
四维地震(4D seimic)主要是指利用重复三维地震测量资料进行油藏动态监测。在油田开发过程中,由于储层特性变化所引起的地震振幅异常、频率变化以及反射同相轴下拖现象等均可作为注蒸汽波及范围四维地震监测的良好识别标志。由于叠后地震资料中常常存在动校正速度不准、动校正拉伸畸变、剩余静校正误差、以及CDP道集中各道波形的差异性等多方面的问题,这会对叠后地震资料所反映出的四维地震异常特性产生影响,造成解释结果的差异性和不确定性。为此,本文尝试开展叠前地震属性反演研究,利用瞬时频率、瞬时频率梯度、能量衰减85%时的频率、最大振幅频率、最大振幅、总能量等多种衰减属性的叠前剖面及其差值剖面来定性解释四维地震实验区的注入蒸汽在剖面上的反映。  相似文献   

18.
19.
The ultimate goal of reservoir simulation in reservoir surveillance technology is to estimate long-term production forecasting and to plan development and management of petroleum fields. However, maintaining reliable reservoir models which honour available static and dynamic data, involve inherent risks due to the uncertainties in space and time of the distribution of hydrocarbons inside reservoirs. Recent applications have shown that these uncertainties can be reduced by quantitative integration of seismic data into the reservoir modelling workflows to identify which areas and reservoir attributes of the model should be updated. This work aims using seismic data to reduce ambiguity in calibrating reservoir flow simulation model with an uncertain petro-elastic model, proposing a circular workflow of inverted seismic impedance (3D and 4D) and engineering studies, with emphasis on the interface between static and dynamic models. The main contribution is to develop an updating procedure for adjusting reservoir simulation response before using it in the production forecasting and enhance the interpretive capability of reservoir properties. Accordingly, the workflow evaluates consistency of reservoir simulation model and inverted seismic impedance, assisted by production history data, to close the loop between reservoir engineering and seismic domains. The methodology is evaluated in a complex, faulted, sandstone reservoir, the Norne benchmark field, where a significant reservoir behaviour understanding (about the static and dynamic reservoir properties) is obtained towards the quantitative integration of seismic impedance data. This leads to diagnosis of the reservoir flow simulation reliability and generation of an updated simulation model consistent with observed seismic and well production history data, as well as a calibrated petro-elastic model. Furthermore, as Norne Field is a benchmark case, this study can be considered to enrich the discussions over deterministic or probabilistic history matching studies.  相似文献   

20.
At the CO2CRC Otway geosequestration site, the abundance of borehole seismic and logging data provides a unique opportunity to compare techniques of Q (measure of attenuation) estimation and validate their reliability. Specifically, we test conventional time-domain amplitude decay and spectral-domain centroid frequency shift methods versus the 1D waveform inversion constrained by well logs on a set of zero-offset vertical seismic profiles. The amplitude decay and centroid frequency shift methods of Q estimation assume that a seismic pulse propagates in a homogeneous medium and ignore the interference of the propagating wave with short-period multiples. The waveform inversion explicitly models multiple scattering and interference on a stack of thin layers using high-resolution data from sonic and density logs. This allows for stable Q estimation in small depth windows (in this study, 150 m), and separation of the frequency-dependent layer-induced scattering from intrinsic absorption. Besides, the inversion takes into account band-limited nature of seismic data, and thus, it is less dependent on the operating frequency bandwidth than on the other methods. However, all considered methods of Q estimation are unreliable in the intervals where subsurface significantly deviates from 1D geometry. At the Otway site, the attenuation estimates are distorted by sub-vertical faults close to the boreholes. Analysis of repeated vertical seismic profiles reveals that 15 kt injection of the CO2-rich fluid into a thin saline aquifer at 1.5 km depth does not induce detectable absorption of P-waves at generated frequencies 5–150 Hz, most likely because the CO2 plume in the monitoring well is thin, <15 m. At the Otway research site, strong attenuation Q ≈ 30–50 is observed only in shaly formations (Skull Creek Mudstone, Belfast Mudstone). Layer-induced scattering attenuation is negligible except for a few intervals, namely 500–650 m from the surface, and near the injection interval, at around 1400–1550 m, where Qscat ≈ 50–65.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号