首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Heterogeneous wave equations are more complicated numerically than homogeneous wave equations, but are necessary for physical validity. A wide variety of numerical solutions of seismic wave equations is available, but most produce strong numerical artefacts and local instabilities where model parameters change rapidly. Accuracy and stability of heterogeneous equations is achieved through staggered-grid formulations. A new pseudospectral staggered-grid algorithm is developed for the poroelastic (Biot) equations. The algorithm may be reduced to handle the elastic and acoustic limits of the Biot equations. Comparisons of results from poroelastic, elastic, acoustic and scalar computations for a 2D model show that porous medium parameters may affect amplitudes significantly. The use of homogeneous wave equations for modelling of a heterogeneous medium, or of a centred rather than a staggered grid, or of simplified (e.g. acoustic) wave equations when elastic or poroelastic media are synthesized, may produce erroneous or ambiguous interpretations.  相似文献   

2.
应用混合变量弹性动力学方程和线性常微分方程组的矩阵指数解法,将层状介质中广泛应用的弹性波传播矩阵解法推广至横向非均匀介质,给出了一种可计算复杂地质体中弹性波传播的广义传播矩阵数值解法。该方法可模拟任意震源及所产生的各种体波、面波,数值结果表明具有很高的计算精度。  相似文献   

3.
双变参数标量纵波方程正演模拟方法   总被引:1,自引:0,他引:1       下载免费PDF全文
常见弹性波动理论的建立是基于介质均匀这一基本假设,实际介质的非均匀性非常普遍.为研究连续介质中波的传播特征,本文从弹性力学中建立弹性波动方程的三个基本方程出发,考虑连续介质弹性参数的空变特征,建立非均匀介质的弹性波动方程,利用Alkhalifah声学近似思想建立位移表征的纵波波动方程,利用本征值问题求解方法建立标量波频率-波数域传播算子,从而建立描述纵波传播的标量波方程,其中波函数为纵波位移的散度,不同于均匀介质标量波方程的波函数为位移势.随后推导含PML边界波动方程差分格式并建立不同模型数值模拟进行数值试算,与均匀假设标量波方程和变密度方程对比证明本方法的准确性和稳定性.  相似文献   

4.
The previous finite‐difference numerical schemes designed for direct application to second‐order elastic wave equations in terms of displacement components are strongly dependent on Poisson's ratio. This fact makes theses schemes useless for modelling in offshore regions or even in onshore regions where there is a high Poisson's ratio material. As is well known, the use of staggered‐grid formulations solves this drawback. The most common staggered‐grid algorithms apply central‐difference operators to the first‐order velocity–stress wave equations. They have been one of the most successfully applied numerical algorithms for seismic modelling, although these schemes require more computational memory than those mentioned based on second‐order wave equations. The goal of the present paper is to develop a general theory that enables one to formulate equivalent staggered‐grid schemes for direct application to hyperbolic second‐order wave equations. All the theory necessary to formulate these schemes is presented in detail, including issues regarding source application, providing a general method to construct staggered‐grid formulations to a wide range of cases. Afterwards, the equivalent staggered‐grid theory is applied to anisotropic elastic wave equations in terms of only velocity components (or similar displacements) for two important cases: general anisotropic media and vertical transverse isotropy media using, respectively, the rotated and the standard staggered‐grid configurations. For sake of simplicity, we present the schemes in terms of velocities in the second‐ and fourth‐order spatial approximations, with second‐order approximation in time for 2D media. However, the theory developed is general and can be applied to any set of second‐order equations (in terms of only displacement, velocity, or even stress components), using any staggered‐grid configuration with any spatial approximation order in 2D or 3D cases. Some of these equivalent staggered‐grid schemes require less computer memory than the corresponding standard staggered‐grid formulation, although the programming is more evolved. As will be shown in theory and practice, with numerical examples, the equivalent staggered‐grid schemes produce results equivalent to corresponding standard staggered‐grid schemes with computational advantages. Finally, it is important to emphasize that the equivalent staggered‐grid theory is general and can be applied to other modelling contexts, e.g., in electrodynamical and poroelastic wave propagation problems in a systematic and simple way.  相似文献   

5.
The modelling of elastic waves in fractured media with an explicit finite‐difference scheme causes instability problems on a staggered grid when the medium possesses high‐contrast discontinuities (strong heterogeneities). For the present study we apply the rotated staggered grid. Using this modified grid it is possible to simulate the propagation of elastic waves in a 2D or 3D medium containing cracks, pores or free surfaces without hard‐coded boundary conditions. Therefore it allows an efficient and precise numerical study of effective velocities in fractured structures. We model the propagation of plane waves through a set of different, randomly cracked media. In these numerical experiments we vary the wavelength of the plane waves, the crack porosity and the crack density. The synthetic results are compared with several static theories that predict the effective P‐ and S‐wave velocities in fractured materials in the long wavelength limit. For randomly distributed and randomly orientated, rectilinear, non‐intersecting, thin, dry cracks, the numerical simulations of velocities of P‐, SV‐ and SH‐waves are in excellent agreement with the results of the modified (or differential) self‐consistent theory. On the other hand for intersecting cracks, the critical crack‐density (porosity) concept must be taken into account. To describe the wave velocities in media with intersecting cracks, we propose introducing the critical crack‐density concept into the modified self‐consistent theory. Numerical simulations show that this new formulation predicts effective elastic properties accurately for such a case.  相似文献   

6.
We recently proposed an efficient hybrid scheme to absorb boundary reflections for acoustic wave modelling that could attain nearly perfect absorptions. This scheme uses weighted averaging of wavefields in a transition area, between the inner area and the model boundaries. In this paper we report on the extension of this scheme to 2D elastic wave modelling with displacement‐stress formulations on staggered grids using explicit finite‐difference, pseudo‐implicit finite‐difference and pseudo‐spectral methods. Numerical modelling results of elastic wave equations with hybrid absorbing boundary conditions show great improvement for modelling stability and significant absorption for boundary reflections, compared with the conventional Higdon absorbing boundary conditions, demonstrating the effectiveness of this scheme for elastic wave modelling. The modelling results also show that the hybrid scheme works well in 2D rotated staggered‐grid modelling for isotropic medium, 2D staggered‐grid modelling for vertically transversely isotropic medium and 2D rotated staggered‐grid modelling for tilted transversely isotropic medium.  相似文献   

7.
阮爱国  李清河 《地震工程学报》2001,23(4):318-329,338
推导了用于非均匀各向异性弹性波场正演的伪谱法基本公式,对特征值法边界修正方程进行了全面的理论推导,给出了二维和三维问题固体,流体的特征变量及各类边界修正方程,选用2个模型,模拟了2.5维弹性波场,对S波分裂的偏振图像和时间延迟作了较详细的分析。  相似文献   

8.
When treating the forward full waveform case, a fast and accurate algorithm for modelling seismic wave propagation in anisotropic inhomogeneous media is of considerable value in current exploration seismology. Synthetic seismograms were computed for P-SV wave propagation in transversely isotropic media. Among the various techniques available for seismic modelling, the finite-difference method possesses both the power and flexibility to model wave propagation accurately in anisotropic inhomogeneous media bounded by irregular interfaces. We have developed a fast high-order vectorized finite-difference algorithm adapted for the vector supercomputer. The algorithm is based on the fourth-order accurate MacCormack-type splitting scheme. Solving the equivalent first-order hyperbolic system of equations, instead of the second-order wave equation, avoids computation of the spatial derivatives of the medium's anisotropic elastic parameters. Examples indicate that anisotropy plays an important role in modelling the kinematic and the dynamic properties of the wave propagation and should be taken into account when necessary.  相似文献   

9.
应用三维交错网格应力-速度有限差分方法,数值模拟了含有倾斜裂缝孔隙介质地层中点声源所激发的井孔声场问题.为满足薄裂缝计算需求,开发了不均匀网格有限差分算法,提高了计算精度及计算速度.利用将孔隙介质方程参数取为流体极限的办法来处理裂缝中的流体,实现了流体-孔隙介质界面处的差分方程统一,使界面处的计算更加灵活方便.在验证了方法正确性的基础上,分别考察了单裂缝宽度、裂缝带宽度、裂缝倾斜角度以及孔隙介质渗透率等参数的变化对井轴上阵列波形的影响并进行了分析.结果表明,声波经过裂缝时可能产生反射横波及斯通利波,后者随裂缝宽度的减小而减小,而前者随裂缝宽度的改变,变化不大,在裂缝很小(20μm)时依然存在;裂缝带的宽度、密度越大,反射斯通利波越强;当裂缝(裂缝带)倾斜时,反射横波消失,但反射斯通利波受裂缝倾斜角度的影响较小;渗透率的改变对斯通利波的衰减影响较为明显.  相似文献   

10.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

11.
We propose a new numerical solution to the first‐order linear acoustic/elastic wave equation. This numerical solution is based on the analytic solution of the linear acoustic/elastic wave equation and uses the Lie product formula, where the time evolution operator of the analytic solution is written as a product of exponential matrices where each exponential matrix term is then approximated by Taylor series expansion. Initially, we check the proposed approach numerically and then demonstrate that it is more accurate to apply a Taylor expansion for the exponential function identity rather than the exponential function itself. The numerical solution formulated employs a recursive procedure and also incorporates the split perfectly matched layer boundary condition. Thus, our scheme can be used to extrapolate wavefields in a stable manner with even larger time‐steps than traditional finite‐difference schemes. This new numerical solution is examined through the comparison of the solution of full acoustic wave equation using the Chebyshev expansion approach for the matrix exponential term. Moreover, to demonstrate the efficiency and applicability of our proposed solution, seismic modelling results of three geological models are presented and the processing time for each model is compared with the computing time taking by the Chebyshev expansion method. We also present the result of seismic modelling using the scheme based in Lie product formula and Taylor series expansion for the first‐order linear elastic wave equation in vertical transversely isotropic and tilted transversely isotropic media as well. Finally, a post‐stack migration results are also shown using the proposed method.  相似文献   

12.
To simulate the seismic signals that are obtained in a marine environment, a coupled system of both acoustic and elastic wave equations is solved. The acoustic wave equation for the fluid region simulates the pressure field while minimizing the number of degrees of freedom of the impedance matrix, and the elastic wave equation for the solid region simulates several elastic events, such as shear waves and surface waves. Moreover, by combining this coupled approach with the waveform inversion technique, the elastic properties of the earth can be inverted using the pressure data obtained from the acoustic region. However, in contrast to the pure acoustic and elastic cases, the complex impedance matrix for the coupled media does not have a symmetric form because of the boundary (continuity) condition at the interface between the acoustic and elastic elements. In this study, we propose a manipulation scheme that makes the complex impedance matrix for acoustic–elastic coupled media to take a symmetric form. Using the proposed symmetric matrix, forward and backward wavefields are identical to those generated by the conventional approach; thus, we do not lose any accuracy in the waveform inversion results. However, to solve the modified symmetric matrix, LDLT factorization is used instead of LU factorization for a matrix of the same size; this method can mitigate issues related to severe memory insufficiency and long computation times, particularly for large‐scale problems.  相似文献   

13.
Seismic wave propagation in transversely isotropic (TI) media is commonly described by a set of coupled partial differential equations, derived from the acoustic approximation. These equations produce pure P‐wave responses in elliptically anisotropic media but generate undesired shear‐wave components for more general TI anisotropy. Furthermore, these equations suffer from instabilities when the anisotropy parameter ε is less than δ. One solution to both problems is to use pure acoustic anisotropic wave equations, which can produce pure P‐waves without any shear‐wave contaminations in both elliptical and anelliptical TI media. In this paper, we propose a new pure acoustic transversely isotropic wave equation, which can be conveniently solved using the pseudospectral method. Like most other pure acoustic anisotropic wave equations, our equation involves complicated pseudo‐differential operators in space which are difficult to handle using the finite difference method. The advantage of our equation is that all of its model parameters are separable from the spatial differential and pseudo‐differential operators; therefore, the pseudospectral method can be directly applied. We use phase velocity analysis to show that our equation, expressed in a summation form, can be properly truncated to achieve the desired accuracy according to anisotropy strength. This flexibility allows us to save computational time by choosing the right number of summation terms for a given model. We use numerical examples to demonstrate that this new pure acoustic wave equation can produce highly accurate results, completely free from shear‐wave artefacts. This equation can be straightforwardly generalized to tilted TI media.  相似文献   

14.
Based on knowledge of a commutative group calculation of the rock stiffness and on some geophysical assumptions, the simplest fractured medium may be regarded as a fracture embedded in an isotropic background medium, and the fracture interface can be simulated as a linear slip interface that satisfies non‐welded contact boundary conditions: the kinematic displacements are discontinuous across the interface, whereas the dynamic stresses are continuous across the interface. The finite‐difference method with boundary conditions explicitly imposed is advantageous for modelling wave propagation in fractured discontinuous media that are described by the elastic equation of motion and non‐welded contact boundary conditions. In this paper, finite‐difference schemes for horizontally, vertically, and orthogonally fractured media are derived when the fracture interfaces are aligned with the boundaries of the finite‐difference grid. The new finite‐difference schemes explicitly have an additional part that is different from the conventional second‐order finite‐difference scheme and that directly describes the contributions of the fracture to the wave equation of motion in the fractured medium. The numerical seismograms presented, to first order, show that the new finite‐difference scheme is accurate and stable and agrees well with the results of previously published finite‐difference schemes (the Coates and Schoenberg method). The results of the new finite‐difference schemes show how the amplitude of the reflection produced by the fracture varies with the fracture compliances. Later, comparisons with the reflection coefficients indicate that the reflection coefficients of the fracture are frequency dependent, whereas the reflection coefficients of the impedance contrast interface are frequency independent. In addition, the numerical seismograms show that the reflections of the fractured medium are equal to the reflections of the background medium plus the reflections of the fracture in the elastic fractured medium.  相似文献   

15.

The system of Biot vector equations in the frequency space includes two elliptic-type vector partial differential equations with unknown displacement vectors in the solid and liquid phases. Considering the Biot equations, alongside with Pride’s equations, the key approaches to the theoretical study of the elastic waves in the two-phase fluid-saturated media, the author suggests an analytical solution for the inhomogeneous Biot equations in the frequency space, which is reduced to finding its fundamental solution (Green’s function). The solution of this problem consists of solutions for two systems of Biot equations. In the first system, only the first equation is inhomogeneous, while in the second system, only the second equation is inhomogeneous and, as it is shown, its right-hand side is exclusively a potential function. The fundamental solution of the full system of inhomogeneous Biot equations (in which both equations are inhomogeneous) is represented in the form of Green’s matrix-tensor, for the scalar elements of which the analytical relations are presented. The obtained formulas describing the elastic displacements of both the solid and liquid phases reflect three wave types, namely, compressional waves of the first and the second kind (the fast and the slow waves, respectively) and shear waves. Similar terms (those describing the same type of the elastic waves in the solid and liquid phases) in the expressions for Green’s functions are linked with each other through the coefficient that links the components of the displacement vectors of the solid and liquid phases corresponding to the given wave type.

  相似文献   

16.
本文应用交错网格高阶有限差分方法模拟弹性波在三维各向同性介质中的传播。采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。在此基础上进行了三维盐丘地质模型的地震波传播数值模拟试算。试算结果表明该方法模拟精度高,在很大程度上减小了数值频散,绕射波更加丰富,而且适用于介质速度具有纵向变化和横向变化的情况。  相似文献   

17.
黏弹性与弹性介质中Rayleigh面波特性对比研究   总被引:8,自引:7,他引:1       下载免费PDF全文
Rayleigh面波的频散特性可以用来研究地表浅层结构. 本文使用时域有限差分法来模拟复杂黏弹性介质中的Rayleigh面波,研究了Q值对面波频散特性的影响.文中采用旋转交错网格有限差分,以非分裂卷积形式的完全匹配层为吸收边界,推出了求解二阶位移-应力各向同性黏弹性波动方程的数值方法.为了检验数值解的精度,首先将简单模型的正演结果与解析解对比,验证了方法的正确性;然后模拟了横向缓变层状介质和含有洞穴的介质中的面波,对弹性和黏弹性介质中的面波的频散特性进行对比分析.模拟结果表明浅层Q值对面波的频散特性有显著的影响;强吸收情况下,高阶面波的能量相对低阶面波能量显著增强.  相似文献   

18.
Acoustic transversely isotropic models are widely used in seismic exploration for P‐wave processing and analysis. In isotropic acoustic media only P‐wave can propagate, while in an acoustic transversely isotropic medium both P and S waves propagate. In this paper, we focus on kinematic properties of S‐wave in acoustic transversely isotropic media. We define new parameters better suited for S‐wave kinematics analysis. We also establish the travel time and relative geometrical spreading equations and analyse their properties. To illustrate the behaviour of the S‐wave in multi‐layered acoustic transversely isotropic media, we define the Dix‐type equations that are different from the ones widely used for the P‐wave propagation.  相似文献   

19.
非常规油气藏(如致密性地层及蕴藏油气的页岩地层)的重要特征是低孔、低渗,但裂隙或裂缝比较发育.为满足非常规勘探的需求,本文将孔、裂隙介质弹性波传播理论应用于多极子声波测井的井孔声场模拟,重点研究了致密介质中裂隙发育时多极子声波的传播机理以及衰减特征.井孔声场的数值计算结果表明裂隙的存在明显改变了弹性波和井孔模式波的频散、衰减和激发强度,尤其是井壁临界折射纵波的激发谱的峰值随着频率的增加逐渐降低,这与应用经典的Biot理论下的计算结果相反,且裂隙的存在也使得饱含水和饱含气时临界折射纵波激发强度的差异变大.井孔模式波的衰减与地层横波衰减和井壁流体交换有关,井壁开孔边界下致密地层裂隙发育还使得井孔斯通利波和艾里相附近的弯曲波对孔隙流体的敏感性增强,在井壁闭孔边界条件下引起井孔模式波衰减的主要因素是裂隙引起的地层横波衰减造成的,且在截止频率附近弯曲波的衰减与地层的横波衰减一致.数值计算结果为解释非常规油气地层的声学响应特征提供了参考.  相似文献   

20.
The system of Biot vector equations in the frequency space includes two elliptic-type vector partial differential equations with unknown displacement vectors in the solid and liquid phases. Considering the Biot equations, alongside with Pride??s equations, the key approaches to the theoretical study of the elastic waves in the two-phase fluid-saturated media, the author suggests an analytical solution for the inhomogeneous Biot equations in the frequency space, which is reduced to finding its fundamental solution (Green??s function). The solution of this problem consists of solutions for two systems of Biot equations. In the first system, only the first equation is inhomogeneous, while in the second system, only the second equation is inhomogeneous and, as it is shown, its right-hand side is exclusively a potential function. The fundamental solution of the full system of inhomogeneous Biot equations (in which both equations are inhomogeneous) is represented in the form of Green??s matrix-tensor, for the scalar elements of which the analytical relations are presented. The obtained formulas describing the elastic displacements of both the solid and liquid phases reflect three wave types, namely, compressional waves of the first and the second kind (the fast and the slow waves, respectively) and shear waves. Similar terms (those describing the same type of the elastic waves in the solid and liquid phases) in the expressions for Green??s functions are linked with each other through the coefficient that links the components of the displacement vectors of the solid and liquid phases corresponding to the given wave type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号