首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In marine acquisition, reflections of sound energy from the water–air interface result in ghosts in the seismic data, both in the source side and the receiver side. Ghosts limit the bandwidth of the useful signal and blur the final image. The process to separate the ghost and primary signals, called the deghosting process, can fill the ghost notch, broaden the frequency band, and help achieve high‐resolution images. Low‐signal‐to‐noise ratio near the notch frequencies and 3D effects are two challenges that the deghosting process has to face. In this paper, starting from an introduction to the deghosting process, we present and compare two strategies to solve the latter. The first is an adaptive mechanism that adjusts the deghosting operator to compensate for 3D effects or errors in source/receiver depth measurement. This method does not include explicitly the crossline slowness component and is not affected by the sparse sampling in the same direction. The second method is an inversion‐type approach that does include the crossline slowness component in the algorithm and handles the 3D effects explicitly. Both synthetic and field data examples in wide azimuth acquisition settings are shown to compare the two strategies. Both methods provide satisfactory results.  相似文献   

2.
Although seismic sources typically consist of identical broadband units alone, no physical constraint dictates the use of only one kind of device. We propose an acquisition method that involves the simultaneous exploitation of multiple types of sources during seismic surveys. It is suggested to replace (or support) traditional broadband sources with several devices individually transmitting diverse and reduced frequency bands and covering together the entire temporal and spatial bandwidth of interest. Together, these devices represent a so‐called dispersed source array. As a consequence, the use of simpler sources becomes a practical proposition for seismic acquisition. In fact, the devices dedicated to the generation of the higher frequencies may be smaller and less powerful than the conventional sources, providing the acquisition system with increased operational flexibility and decreasing its environmental impact. Offshore, we can think of more manageable boats carrying air guns of different volumes or marine vibrators generating sweeps with different frequency ranges. On land, vibrator trucks of different sizes, specifically designed for the emission of particular frequency bands, are preferred. From a manufacturing point of view, such source units guarantee a more efficient acoustic energy transmission than today's complex broadband alternatives, relaxing the low‐ versus high‐frequency compromise. Furthermore, specific attention can be addressed to choose shot densities that are optimum for different devices according to their emitted bandwidth. In fact, since the sampling requirements depend on the maximum transmitted frequencies, the appropriate number of sources dedicated to the lower frequencies is relatively small, provided the signal‐to‐noise ratio requirements are met. Additionally, the method allows to rethink the way to address the ghost problem in marine seismic acquisition, permitting to tow different sources at different depths based on the devices' individual central frequencies. As a consequence, the destructive interference of the ghost notches, including the one at 0 Hz, is largely mitigated. Furthermore, blended acquisition (also known as simultaneous source acquisition) is part of the dispersed source array concept, improving the operational flexibility, cost efficiency, and signal‐to‐noise ratio. Based on theoretical considerations and numerical data examples, the advantages of this approach and its feasibility are demonstrated.  相似文献   

3.
海上倾斜缆采集技术具有多样的陷波特征,通过去鬼波处理可获得宽频数据.针对海水面波浪起伏及缆深误差引起的鬼波延迟时间估计误差以及崎岖海底和目的层深度变化使得鬼波和一次反射波的振幅差异系数随偏移距的变化而难以给定一个固定值的问题,本文推导出频率慢度域中鬼波滤波算子以及自适应迭代反演求解上行波算法,该鬼波滤波算子与不同水平慢度对应的鬼波和一次反射波的振幅差异系数以及鬼波延迟时间有关.并基于计算出的理论下行波与实际下行波之间的平方误差最小理论实现自适应反演迭代最优计算该振幅差异系数和鬼波延迟时间.合成的及某海上采集的倾斜缆数据去鬼波处理结果表明,频率慢度域自适应迭代反演算法能较好地去除海上变深度缆鬼波,能达到拓宽地震记录频带目的.  相似文献   

4.
Single‐component towed‐streamer marine data acquisition records the pressure variations of the upgoing compressional waves followed by the polarity‐reversed pressure variations of downgoing waves, creating sea‐surface ghost events in the data. The sea‐surface ghost for constant‐depth towed‐streamer marine data acquisition is usually characterised by a ghost operator acting on the upgoing waves, which can be formulated as a filtering process in the frequency–wavenumber domain. The deghosting operation, usually via the application of the inverse Wiener filter related to the ghost operator, acts on the signal as well as the noise. The noise power transfer into the deghosted data is proportional to the power spectrum of the inverse Wiener filter and is amplifying the noise strongly at the notch wavenumbers and frequencies of the ghost operator. For variable‐depth streamer acquisition, the sea‐surface ghost cannot be described any longer as a wavenumber–frequency operator but as a linear relationship between the wavenumber–frequency representation of the upgoing waves at the sea surface and the data in the space–frequency domain. In this article, we investigate how the application of the inverse process acts on noise. It turns out that the noise magnification is less severe with variable‐depth streamer data, as opposed to constant depth, and is inversely proportional to the local slant of the streamer. We support this statement via application of the deghosting process to real and numerical random noise. We also propose a more general concept of a wavenumber–frequency ghost power transfer function, applicable for variable‐depth streamer acquisition, and demonstrate that the inverse of the proposed variable‐depth ghost power transfer function can be used to approximately quantify the action of the variable‐depth streamer deghosting process on noise.  相似文献   

5.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   

6.
Most seismic processing algorithms generally consider the sea surface as a flat reflector. However, acquisition of marine seismic data often takes place in weather conditions where this approximation is inaccurate. The distortion in the seismic wavelet introduced by the rough sea may influence (for example) deghosting results, as deghosting operators are typically recursive and sensitive to the changes in the seismic signal. In this paper, we study the effect of sea surface roughness on conventional (5–160 Hz) and ultra‐high‐resolution (200–3500 Hz) single‐component towed‐streamer data. To this end, we numerically simulate reflections from a rough sea surface using the Kirchhoff approximation. Our modelling demonstrates that for conventional seismic frequency band sea roughness can distort results of standard one‐dimensional and two‐dimensional deterministic deghosting. To mitigate this effect, we introduce regularisation and optimisation based on the minimum‐energy criterion and show that this improves the processing output significantly. Analysis of ultra‐high‐resolution field data in conjunction with modelling shows that even relatively calm sea state (i.e., 15 cm wave height) introduces significant changes in the seismic signal for ultra‐high‐frequency band. These changes in amplitude and arrival time may degrade the results of deghosting. Using the field dataset, we show how the minimum‐energy optimisation of deghosting parameters improves the processing result.  相似文献   

7.
刘勇  庹先国  李怀良  沈统  陆景 《地球物理学报》2017,60(11):4302-4312

随着多波多分量技术的发展,宽频数据采集逐渐成为地震勘探的发展趋势.通过高保真获取全波场信息,并尽可能保留高频有效成分,进而利用多种波场信息相互验证和补充,是提高地震勘探精度的有效方法.受仪器带宽限制,常规设备在高频段很难同时保持高分辨率和大动态范围特征,在多波地震采集时,极容易出现分辨率不足和限幅失真等现象,极大影响多波多分量方法的实际应用效果.鉴于此,本文给出一种利用积分器、高频ADC、DAC和抽取滤波器构成的低成本宽频数据采集方法.通过构造环路滤波器(调制器),对高频ADC输出数据中的量化噪声二次整形,并配合抽取滤波,对带外噪声进行有效压制.实际测试表明,通过精细电路结构设计,采集站有效分辨率可达24位(采样率为2 kHz),动态范围超过140 dB,SNR达142 dB.相比传统设备,其采集数据在5~25 Hz的低频段和100 Hz以上的高频段都具有更加丰富的有效信息,非常适合多波多分量数据采集.

  相似文献   

8.
Three‐dimensional receiver ghost attenuation (deghosting) of dual‐sensor towed‐streamer data is straightforward, in principle. In its simplest form, it requires applying a three‐dimensional frequency–wavenumber filter to the vertical component of the particle motion data to correct for the amplitude reduction on the vertical component of non‐normal incidence plane waves before combining with the pressure data. More elaborate techniques use three‐dimensional filters to both components before summation, for example, for ghost wavelet dephasing and mitigation of noise of different strengths on the individual components in optimum deghosting. The problem with all these techniques is, of course, that it is usually impossible to transform the data into the crossline wavenumber domain because of aliasing. Hence, usually, a two‐dimensional version of deghosting is applied to the data in the frequency–inline wavenumber domain. We investigate going down the “dimensionality ladder” one more step to a one‐dimensional weighted summation of the records of the collocated sensors to create an approximate deghosting procedure. We specifically consider amplitude‐balancing weights computed via a standard automatic gain control before summation, reminiscent of a diversity stack of the dual‐sensor recordings. This technique is independent of the actual streamer depth and insensitive to variations in the sea‐surface reflection coefficient. The automatic gain control weights serve two purposes: (i) to approximately correct for the geometric amplitude loss of the Z data and (ii) to mitigate noise strength variations on the two components. Here, Z denotes the vertical component of the velocity of particle motion scaled by the seismic impedance of the near‐sensor water volume. The weights are time‐varying and can also be made frequency‐band dependent, adapting better to frequency variations of the noise. The investigated process is a very robust, almost fully hands‐off, approximate three‐dimensional deghosting step for dual‐sensor data, requiring no spatial filtering and no explicit estimates of noise power. We argue that this technique performs well in terms of ghost attenuation (albeit, not exact ghost removal) and balancing the signal‐to‐noise ratio in the output data. For instances where full three‐dimensional receiver deghosting is the final product, the proposed technique is appropriate for efficient quality control of the data acquired and in aiding the parameterisation of the subsequent deghosting processing.  相似文献   

9.
单球式海底地震仪(以下简称OBS)由于其成本低、操作简便的优点在天然地震研究、人工地震探测中获得了广泛应用.本文首先分析多型进口和国产OBS在台湾海峡西部采集的地震数据,发现同一台OBS上的垂直向速度检波器(Z分量)的信噪比常显著低于压力检波器(H分量),由于这两种检波器记录的都是海底的垂向振动信号,推测速度检波器的低信噪比更多的与仪器特性有关.然后从信号传递和噪声水平两方面分析影响速度检波器信噪比的因素:为检测速度检波器与OBS壳体的耦合效果,对某型宽频带OBS和陆上地震仪进行了同址同步观测试验,发现OBS的整机灵敏度有较大的差异;为分析速度检波器的水底噪声特征,以H分量记录作为基准,对比分析了同一台仪器不同站位的Z分量噪声水平,发现速度检波器在浅海区受到较大的次生干扰.本文指出OBS的内部耦合和水流次生干扰是至今尚未引起大家重视而又严重影响资料品质和多波探测成效的两个关键问题,这一研究结果对于改进OBS结构设计和制造工艺,以及OBS数据多分量处理方法研究有重要的参考意义.  相似文献   

10.
In order to deconvolve the ghost response from marine seismic data, an estimate of the ghost operator is required. Typically, this estimate is made using a model of in‐plane propagation, i.e., the ray path at the receiver falls in the vertical plane defined by the source and receiver locations. Unfortunately, this model breaks down when the source is in a crossline position relative to the receiver spread. In this situation, in‐plane signals can only exist in a small region of the signal cone. In this paper, we use Bayes' theory to model the posterior probability distribution functions for the vertical component of the ray vector given the known source–receiver azimuth and the measured inline component of the ray vector. This provides a model for the ghost delay time based on the acquisition geometry and the dip of the wave in the plane of the streamer. The model is fairly robust with regard to the prior assumptions and controlled by a single parameter that is related to the likelihood of in‐plane propagation. The expected values of the resulting distributions are consistent with the deterministic in‐plane model when in‐plane likelihood is high but valid everywhere in the signal cone. Relaxing the in‐plane likelihood to a reasonable degree radically simplifies the shape of the expected‐value surface, lending itself for use in deghosting algorithms. The model can also be extended to other plane‐wave processing problems such as interpolation.  相似文献   

11.
本文发展基于波动方程的上下缆鬼波压制方法,推导了上下缆地震波场频率波数域波动方程延拓合并公式.基于Fourier变换的波场解析延拓确保上下缆资料振幅相位的一致性,消除了长拖缆远偏移距信号的计算误差,同时具有较高的计算效率;上下缆地震波场的波动方程法合并有效解偶鬼波干涉,实现综合利用上下缆地震数据压制鬼波.理论模型数据和实际采集地震数据的测试表明了方法的有效性.  相似文献   

12.
In this paper, we propose a novel three‐dimensional receiver deghosting algorithm that is capable of deghosting both horizontal and slanted streamer data in a theoretically consistent manner. Our algorithm honours wave propagation phenomena in a true three‐dimensional sense and frames the three‐dimensional receiver deghosting problem as a Lasso problem. The ultimate goal is to minimise the mismatch between the actual measurements and the simulated wavefield with an L1 constraint applied in the extended Radon space to handle the underdetermined nature of this problem. We successfully demonstrate our algorithm on a modified three‐dimensional EAGE/SEG Overthrust model and a Red Sea marine dataset.  相似文献   

13.
The geological storage of carbon dioxide is considered as one of the measures to reduce greenhouse gas emissions and to mitigate global warming. Operators of storage sites are required to demonstrate safe containment and stable behaviour of the storage complex that is achieved by geophysical and geochemical monitoring, combined with reservoir simulations. For site characterization, as well as for imaging the carbon dioxide plume in the reservoir complex and detecting potential leakage, surface and surface‐borehole time‐lapse seismic monitoring surveys are the most widespread and established tools. At the Ketzin pilot site for carbon dioxide storage, permanently installed fibre‐optic cables, initially deployed for distributed temperature sensing, were used as seismic receiver arrays, demonstrating their ability to provide high‐resolution images of the storage formation. A vertical seismic profiling experiment was acquired using 23 source point locations and the daisy‐chained deployment of a fibre‐optic cable in four wells as a receiver array. The data were used to generate a 3D vertical seismic profiling cube, complementing the large‐scale 3D surface seismic measurements by a high resolution image of the reservoir close to the injection well. Stacking long vibro‐sweeps at each source location resulted in vertical seismic profiling shot gathers characterized by a signal‐to‐noise ratio similar to gathers acquired using geophones. A detailed data analysis shows strong dependency of data quality on borehole conditions with significantly better signal‐to‐noise ratio in regions with good coupling conditions.  相似文献   

14.
海水面的虚反射(鬼波)引起海上拖缆采集数据陷波,导致地震记录频带变窄,而近年发展的变深度缆采集技术,具有多样的陷波特征,通过专门的去虚反射处理方法可获得宽频数据.本文基于已有研究成果,将最小二乘反演迭代压制虚反射算法应用于某海上变深度缆宽频处理.基于频率波数域镜像记录生成方法获得镜像炮集记录,并采用最小二乘解从变深度缆原始和镜像炮集记录中提取上行波.针对镜像炮集记录生成受初始速度模型精度的影响,使得某深度缆接收的上行波和下行波之间的实际延迟时间存在误差,采用最小二乘反演迭代算法最优化计算下行波与上行波之间的平均延迟时间和上行波记录,并采用时空数据窗口滑动克服延迟时间随炮检距和目的层深度变化问题.合成数据及某海上实际变深度缆数据处理测试结果表明,该方法能较好地压制变深度缆由海水面产生的虚反射,能达到拓宽地震记录频带目的.  相似文献   

15.
作为一种特殊的噪声,鬼波对一次波的波形及频带宽度产生极大的影响,鬼波压制是提高海上地震资料分辨率及保真度的重要因素.以格林公式为基础,详细论述了基于格林函数理论的鬼波压制方法,在不需要地下介质信息的条件下,进行地震数据驱动鬼波压制,并根据"Double Dirichlet"(双狄利克雷)边界条件,预测压力波场和垂直速度波场.建立了基于格林函数理论鬼波压制的处理流程,数值模拟和实际资料处理结果表明,基于格林函数理论鬼波压制方法在很好地去除鬼波的同时极大地拓宽了地震资料的频带,尤其提升了低频端能量,有利于后续资料的处理解释.  相似文献   

16.
Vibroseis is a method that imparts coded seismic energy into the ground. The energy is recorded with geophones and then processed using the known (coded) input signal. The resulting time‐domain representation of vibroseis data is an impulsive wavetrain with wavelet properties consistent with the coded input signal convolved with the earth's reflectivity series. Historically, vibratory seismic surveys collect data from one source location at a time, summing one or more sources at each location. We present a method of designing orthogonal sweeps using the concept of combisweeps. The orthogonal sweeps allow simultaneous recording and later separation of two or more unique source locations. Orthogonality of sweeps permits separation of the data into unique source‐location field records by a conventional correlation procedure. The separation power of the orthogonal sweeps is demonstrated by a comparison between separated data and data acquired with one vibrator. Separation noise was at a negligible level for our demonstration data sets when two vibrators were located 50 m to 200 m apart. Coincident generation and recording of two vibroseis sweeps at different locations would allow almost double the amount of data to be recorded for a given occupation time and requires only half the storage medium.  相似文献   

17.
海底可控源电磁接收机及其水合物勘查应用   总被引:2,自引:2,他引:0       下载免费PDF全文

海洋可控源电磁法在国外已成为海底天然气水合物调查的有效手段之一.为实现我国海域深水条件下水合物的海洋可控源电磁探测,本文从方法原理出发,采用低功耗嵌入式控制、前端低噪声斩波放大、高精度时间同步和水声通讯等技术,设计并开发了由承压舱、玻璃浮球、采集电路、电场与磁场传感器、姿态测量装置、声学释放器、USBL定位信标、测量臂、水泥块等部件组成的海底可控源电磁接收机,实现了海洋微弱电磁场信号的高精度采集.海底可控源电磁接收机具有高可靠性、低噪声、低功耗和低时漂的特点.利用研制的海底可控源电磁接收机,在琼东南海域进行水合物勘查,采集得到了可靠的人工源电磁场数据.通过数据处理及反演,获得了研究区海底的电阻率模型,结合地震资料,对高阻异常体进行推断解释,其结果为天然气水合物钻探井位布置提供了电性依据.

  相似文献   

18.
海洋拖曳式水平电偶源数值模拟与电场接收机研制   总被引:6,自引:6,他引:0       下载免费PDF全文
海洋天然气水合物资源调查中,电磁法已成为地震勘探最有效的补充手段之一,而我国海洋水合物电磁探测中的拖曳式电场接收机此前是空白.本文从方法原理、仪器设备和海洋试验等方面,对海洋拖曳式水平电偶极-偶极方法进行研讨.建立三维电阻率模型,进行数值模拟,讨论收发距、发射频率、拖曳装置离海底高度等参数与电场异常响应的关系,针对特定模型给出了最佳观测参数以指导仪器硬件设计与海洋测试.在此基础上,采用高级嵌入式计算机的智能化控制、前端低噪声斩波放大、高精度同步采集等技术,研制了由拖体、承压舱、采集电路、低噪声电场传感器等组成的海洋拖曳式水平轴向电场接收机,其系统噪声达到2 nV/√HZ@(1~100Hz).将自主研制的电场接收机用于国内首次拖曳式电偶极-偶极方法的海洋试验与评估,并对海试资料进行了处理与分析.研究结果表明,所研发的仪器达到了设计指标,能够用于海洋天然气水合物调查.  相似文献   

19.
A modular borehole monitoring concept has been implemented to provide a suite of well‐based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre‐optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi‐conductor tubing‐encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre‐optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre‐optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity‐converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal‐to‐noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing‐deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones.  相似文献   

20.
A marine source generates both a direct wavefield and a ghost wavefield. This is caused by the strong surface reflectivity, resulting in a blended source array, the blending process being natural. The two unblended response wavefields correspond to the real source at the actual location below the water level and to the ghost source at the mirrored location above the water level. As a consequence, deghosting becomes deblending (‘echo‐deblending’) and can be carried out with a deblending algorithm. In this paper we present source deghosting by an iterative deblending algorithm that properly includes the angle dependence of the ghost: It represents a closed‐loop, non‐causal solution. The proposed echo‐deblending algorithm is also applied to the detector deghosting problem. The detector cable may be slanted, and shot records may be generated by blended source arrays, the blending being created by simultaneous sources. Similar to surface‐related multiple elimination the method is independent of the complexity of the subsurface; only what happens at and near the surface is relevant. This means that the actual sea state may cause the reflection coefficient to become frequency dependent, and the water velocity may not be constant due to temporal and lateral variations in the pressure, temperature, and salinity. As a consequence, we propose that estimation of the actual ghost model should be part of the echo‐deblending algorithm. This is particularly true for source deghosting, where interaction of the source wavefield with the surface may be far from linear. The echo‐deblending theory also shows how multi‐level source acquisition and multi‐level streamer acquisition can be numerically simulated from standard acquisition data. The simulated multi‐level measurements increase the performance of the echo‐deblending process. The output of the echo‐deblending algorithm on the source side consists of two ghost‐free records: one generated by the real source at the actual location below the water level and one generated by the ghost source at the mirrored location above the water level. If we apply our algorithm at the detector side as well, we end up with four ghost‐free shot records. All these records are input to migration. Finally, we demonstrate that the proposed echo‐deblending algorithm is robust for background noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号