共查询到20条相似文献,搜索用时 31 毫秒
1.
Gill M.MARTIN Amulya CHEVUTURI Ruth E.COMER Nick J.DUNSTONE Adam A.SCAIFE Daquan ZHANG 《大气科学进展》2019,36(3):253-260
Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill in predicting year-to-year variations in South China Sea summer monsoon onset at up to a three-month lead time using the GloSea5 seasonal forecasting system. The main source of predictability comes from skillful prediction of Pacific sea surface temperatures associated with El NiÑo and La NiÑa. The South China Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent development of rainfall across East Asia is influenced by subseasonal variability and synoptic events that reduce predictability, but interannual variability in the broadscale monsoon onset for East Asian summer monsoon still provides potentially useful information for users about possible delays or early occurrence of the onset of rainfall over East Asia. 相似文献
2.
3.
The spring persistent rains (SPR) over southeastern China (SEC) is a synoptic and climatic phenomenon
that is unique in East Asia. Su cient evidence proves that it results from the mechanical and thermal effects of the giant Tibetan Plateau (TP), but its temporal span and spatial distribution are not clear at present.A climatological analysis of the NCEP/NCAR circulation and sensible heat data shows that at the 13th pentad of the solar year (1st pentad of March) there are remarkable increases in the sensible heating over the main and southeastern part of the TP, the southwesterly velocity over the southeastern flank of the TP and SEC, and rainfall over SEC, indicating the onset of the SPR.However, after the 27th pentad of the solar year (3rd pentad of May), these variables, except for the sensible heating over the main part of the TP, decrease rapidly. The ridge line of the subtropical high in the mid-low troposphere over the South China Sea (SCS) slopes northward instead of southward as before. The rain belt center over SEC shifts to the SCS and the SCS monsoon breaks out, indicating the end of the SPR. Hence, it is reasonable to define the SPR temporal span from the 13th to 27th pentad of the solar year. Data analysis and numerical sensitivity experiments show that, although the warm and cold airs converge at about 30°N in the SPR period, the distribution and intensity of the SPR rain belt are obviously in influenced by the topography of the Nanling and Wuyi Mountains (NWM). The mountains can block and lift cold and warm airs, strengthening frontogenesis and rainfall. As a result, the axis of the SPR rain belt is superposed over that of the mountain range. Accordingly, the spatial distribution of the SPR extends over most of the SEC, more speci cally, to the south of the middle and lower reaches of the Yangtze River (30°N), and to the east of 110°E. 相似文献
4.
DING Yihui LI Chongyin HE Jinhai CHEN Longxun GAN Zijun QIAN Yongfu YAN Junyue WANG Dongxiao SHI Ping FANG Wendong XU Jianping LI Li 《Acta Meteorologica Sinica》2006,20(2):159-190
The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon. 相似文献
5.
Comparison of the Double Summer Monsoon Troughs over East Asia 总被引:1,自引:0,他引:1
Based on NCEP/NCAR reanalysis data, an investigation has been carried on the comparison of the double summer monsoon troughs over East Asia, which refer to the subtropical summer monsoon trough (subtropical-trough) and the South China Sea summer monsoon trough (SCS trough), respectively. The results show that the SCS trough is stronger than the subtropical-trough either in convergence or convection. The subtropical-trough extends up to higher levels and inclines northward with altitude, while, the SCS trough extends up to a lower level, and its position is seldom changed. The SCS trough establishes early and abruptly with the low level positive relative vorticity appearing suddenly, and retreats slowly, but the subtropical-trough establishes step by step with the positive relative vorticity initially over the Yunnan-Guizhou Plateau and Guangxi areas spreading gradually northeastward, and withdraws rapidly. The onset of SCS trough is obviously indicated by the reverse of the easterly, but the establishment of the subtropical-trough is characteristic of the westerly enhancement. The subtropical-trough has clearly frontal property, yet the SCS trough has not. 相似文献
6.
南海夏季风活动及其影响 总被引:62,自引:15,他引:62
资料分析及其同南亚(印度)夏季风的比较,指出建立的突发性和经向分量的重要性是南海夏季风活动的两个最基本特征。根据南海夏季风经向分量与纬向分量同样重要的特征,并考虑南海地区大气环流的基本形势,提出了用对流层高低层散度差构成季风指数,它可以更好地描写南海夏季风的活动。资料分析和大气环流模式(GCM)数值模拟试验都清楚地表明南海夏季风年际异常对大气环流和气候有极为重要的影响,不仅影响东亚地区,而且通过东亚-太平洋-美洲(PJ或称EPA)波列影响美国的天气气候变化。 相似文献
7.
Intraseasonal Oscillation of the South China Sea Summer Monsoon and Its Influence on Regionally Persistent Heavy Rain over Southern China 下载免费PDF全文
The intraseasonal oscillation(ISO) in the South China Sea summer monsoon(SCSSM) and its influence on regionally persistent heavy rain(RPHR) over southern China are examined by using satelhte outgoing long wave radiation,NCEP/NCAR reanalysis,and gridded rainfall station data in China from 1981 to 2010.The most important feature of the ISO in SCSSM,contributing to the modulation of RPHR,is found to be the fluctuation in the western Pacific subtropical high(WPSH),along with a close link to the Madden-Julian oscillation(MJO).Southern China is divided into three regions by using rotated empirical orthogonal functions(REOFs)for intraseasonal rainfall,where the incidence rate of RPHR is closely linked to the intraseasonal variation in rainfall.It is found that SCSSM ISOs are the key systems controlling the intraseasonal variability in rainfall and can be described by the leading pair of empirical orthogonal functions(EOFs) for the 850-hPa zonal wind over the SCS and southern China.Composite analyses based on the principal components(PCs) of the EOFs indicate that the ISO process in SCSSM exhibits as the east-west oscillation of the WPSH,which is coupled with the northward-propagating MJO,creating alternating dry and wet phases over southern China with a period of 40 days.The wet phases provide stable and lasting circulation conditions that promote RPHR.However,differences in the ISO structures can be found when RPHR occurs in regions where the WPSH assumes different meridional positions.Further examination of the meridional-phase structure suggests an important role of northward-propagating ISO and regional air-sea interaction in the ISO process in SCSSM. 相似文献
8.
Response of the East Asian summer monsoon(EASM) rainfall to external forcing(insolation,volcanic aerosol,and greenhouse gases) is investigated by analysis of a millennium simulation with the coupled climate model ECHO-G.The model reproduces reasonably realistic present-day EASM climatology.The simulated precipitation variation in East Asia over the last millennium compares favorably with the observed and proxy data.It is found that the features and sensitivity of the forced response depend on latitude.On... 相似文献
9.
近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响 总被引:5,自引:1,他引:5
根据NCEP/NCAR、NCEP/DOE和ERA40再分析资料以及中国596个台站逐月降水观测资料,利用相关分析、小波分析和交叉谱分析等统计方法,分析了近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响,探讨了影响高原夏季风长期变化的可能原因.结果表明:高原夏季风具有年际和年代际的多时间尺度变化特征,在1958~2010年呈显著增强趋势,同时也存在明显的年际变化.进一步分析发现,高原夏季风异常增强时,亚洲季风区大气环流出现显著变化,季风环流减弱,并伴随东亚季风降水异常,华南和华北降水减少,长江中下游地区降水增加.高原夏季风的增强趋势可能与对流层中层青藏高原—周边陆地热力差异(尤其是高原—东 相似文献
10.
伴随南海夏季风爆发的大尺度大气环流演变 总被引:39,自引:11,他引:39
主要基于美国NCEP和NCAR的再分析资料(1980~1996年),针对南海夏季风爆发日期进行合成分析,研究了伴随南海夏季风爆发的大尺度大气环流演变。其结果清楚地表明伴随南海夏季风爆发,南亚和东南亚地区的对流层低层风场、对流层高层位势高度场以及大气湿度场和垂直运动场都有极显著的变化。南亚和东南亚850 hPa上涡旋对的发展和活动以及500 hPa副高从南海地区的东撤对南海季风爆发起着重要作用。伴随南海夏季风的爆发,在孟加拉湾到南中国海一带整层湿度和500 hPa垂直上升运动都出现了极明显的增加。对流层高层和对流层低层环流演变的特征也清楚表明,南海夏季风爆发既是全球环流冬夏演变的一个部分,又有显著的区域性特征。本文还指出南海夏季风在北部比中部和南部早建立的结论依据不足,进而补充给出了亚洲季风爆发日期示意图。 相似文献
11.
Effects of the Indo-China Peninsula Heat Fluxes on the 1998 South China Sea Summer Monsoon 下载免费PDF全文
1. IntroductionBecause the South China Sea (SCS) is one of theregions where the Asian summer monsoon onset oc-curs earliest, the SCS summer monsoon (SCSSM) hasalways been a research focus, especially in recent yearswith the implementation of the SCS Monsoon Exper-iment (SCSMEX) (e.g., Tao and Chen, 1987; Changand Chen, 1995; Lau et al., 2000; Ding and Li, 1999;Ding and Liu, 2001; Li and Wu, 2000; Xie et al., 1998;Zhang et al., 2004). Climatologically, the SCSSM on-set is a rem… 相似文献
12.
利用高分辨率的区域气候模式 (RegCM_NCC) 对南海夏季风爆发进行模拟研究。研究表明:该模式对积云对流参数化方案的选择十分敏感, 其中以Kuo积云参数化方案为最好, 可以比较成功地模拟出南海夏季风的爆发时间、爆发前后高、低层风场的剧烈变化以及季风与季风雨带的向北推进。然而该方案对于雨量和副热带高压位置的模拟, 与观测相比尚存在一定的偏差, 主要表现为副热带高压位置模拟偏北、偏东; 南海地区的降水量模拟偏少、降水范围偏小。此外, 采用4种参数化方案 (Kuo, Grell, MFS, Betts-Miller) 集成的结果在某种程度上要优于单个方案的结果, 这种改善主要体现在对南海地区季风爆发后降水的模拟上。 相似文献
13.
春季青藏高原东部热力异常与东亚夏季风关系的年代际变化 总被引:2,自引:0,他引:2
利用1948-2002年NCEP/NCAR逐日再分析及月平均资料,分析了春季青藏高原地区大气热源的气候分布和高原东部大气热源的年代际变化特征及其异常与东亚夏季大气环流关系的年代际变化.结果表明:春季青藏高原东部大气热源在1965年存在加强突变,且1970年以后热源加强趋势十分显著.此外,春季青藏高原东部大气热源异常与东亚夏季风强弱具有年代际关系,表现为1977/1978年前春季高原东部大气热源与东亚夏季风存在负相关关系,1977/1978年后两者的关系不明显. 相似文献
14.
南海海温异常影响南海夏季风的数值模拟研究 总被引:5,自引:0,他引:5
采用p-σ九层区域气候模式(p-σRCM9)模拟并研究了南海海温异常对南海夏季风的影响, 数值模拟结果表明, 5月份的南海海温对南海夏季风的爆发日期起关键作用: 5月份南海海温持续增温 (降温), 南海夏季风爆发日期偏早 (偏晚)。南海夏季风爆发后, 南海异常增温, 同期的南海夏季风增强, 而后期的南海夏季风减弱; 南海异常降温, 则与之相反。机制分析表明, 南海海温正(负)异常增强(减弱)了海面与行星边界层之间的能量交换, 主要是潜热通量的输送, 并在大气中通过积云对流加热率的变化来影响对流层热量的分布, 进而引起对流层中低层辐合和高层辐散的变化, 然后使得环流场和风场作出相应地调整, 环流场和风场又会反过来影响积云对流加热率的变化, 这是一个正反馈过程。在5月份南海增温(降温)强迫下, 5月份南海地区的对流活动加强(减弱), 使得对流层低层副热带高压提前(延后)撤出南海, 从而有利于南海夏季风爆发偏早(晚)。在南海海温异常强迫下, 中国东南部和南海地区的降水率异常主要是由积云对流所产生的降水率异常引起。 相似文献
15.
HE Jinhai ZHAO Ping ZHU Congwen ZHANG Renhe TANG Xu CHEN Longxun ZHOU Xiuji 《Acta Meteorologica Sinica》2008,22(4):419-434
Based on NCEP/NCAR gridded reanalysis, TRMM precipitation data, CMAP, and rainfall observations in East China, a study is conducted with focus on the timing and distinctive establishment of the rainy season of the East Asian subtropical monsoon (EASM) in relation to the South China Sea (SCS) tropical summer monsoon (SCSM). A possible mechanism for the EASM is investigated. The results suggest that 1) the EASM rainy season begins at first over the south of the Jiangnan region to the north of South China in late March to early April (i.e., pentads 16-18), and then the early flooding period in South China starts when southerly winds enhance and convective rainfall increases pronouncedly; 2) the establishment of the EASM rainy season is earlier than that of its counterpart, the SCSM. The EASM and the SCSM each is featured with its own independent rain belt, strong southwesterly wind, intense vertical motion, and robust low-level water vapor convergence. The SCSM interacts with the EASM, causing the EASM rainy belt to move northward. The two systems are responsible for the floods/droughts over the eastern China; and 3) in mid-late March, the eastern Asian landmass (especially the Tibetan Plateau) has its thermal condition changing from a cold to a heat source for the atmosphere. A reversal of the zonal thermal contrast and related temperature and pressure contrasts between the landmass and the western Pacific happens. The argument about whether or not the dynamic and thermal effects of the landmass really act as a mechanism for the earlier establishment of the EASM rain belt is discussed and to be further clarified. Finally, the article presents some common understandings and disagreements regarding the EASM. 相似文献
16.
用1980~1996年OLR资料及NCEP/NCAR再分析资料研究了南海夏季风持续异常的基本特征及其与全球环流的关系.对比分析结果指出,强弱南海夏季风期大尺度环流(副热带高压、局地 Hadley环流及 Walker环流等)变化基本相反.在南海地区出现强弱持续异常的季风活动时,该地区的对流活动不仅与大尺度热带和副热带流场有关,而且还反映出北半球西风带环流的调整.北半球中高纬大气环流对南海夏季风持续异常是有响应的.南海地区季风的强弱,特别是出现持续异常时,强弱季风所对应的动能差异是全球性的,其相应的大气热状态也截然不同.南海夏季风强烈而持续的对流活动明显通过改变大气热源的分布和大尺度垂直环流的结构,影响到更大范围地区的环流状况. 相似文献
17.
对比云和降水表征的东亚夏季风活动 总被引:1,自引:0,他引:1
利用1998~2007年候平均ISCCP(International Satellite Cloud Climatology Project)D1云资料和台站融合降水资料,定义了两类云指数和降水指数,分别反映东亚夏季风活动期间不同云类云量和降水量位置及强弱的变化。用云指数和降水指数研究了东亚夏季风在中国大陆的推进过程,发现两类指数均能表现东亚夏季风的停滞与北跳特征且具有时空上的一致性。基于云指数变化定义了中国东部华南、华东和华北三个区域季风活跃期、过渡期和中断期,检验了季风活跃期和中断期云指数的差异、500 hPa环流场和水汽场的差异,验证了用云表征季风活动的合理性。对比了用云指数和降水指数定义的季风活动期,发现两个指数定义的季风活跃期和中断期日数虽有差异但基本一致,二者的区别在于降水指数偏重于对降水特征差异的描述,云指数则更偏重于对不同类型云量差异的描述,二者的差异还反映了降水性质的差异。 相似文献
18.
QIAN Yongfu ZHANG Yan JIANG Jing YAO Yonghong XU Zhongfeng 《Acta Meteorologica Sinica》2005,19(2):129-142
The multi-yearly averaged pentad meteorological fields at 850 hPa of the NCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 are analyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then the tropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the whole area in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), east of 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later in the India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the south end of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the whole area, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of the surface sensible heat flux, air temperature, and pressure in spring and early summer in the middle to high latitudes of the East Asian continent between 100°E and 120癊are crucially responsible for the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes that induce a continental depression to form and break through the high system of pressure originally located in the above continental areas. The low depression in turn introduces the southwesterly to come into the BOB to the SCS areas, east of 90°E, and thus makes the SCS summer monsoon (SCSSM) burst out earliest in Asia. In the IP to the AS areas, west of 90°E, the surface sensible heat flux almost does not experience obvious change during April and May, which makes the tropical Indian summer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded that the meridian of 90°E is the demarcation line between the South Asian summer monsoon (SASM, i.e., the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporal relations between the TASM onset and the seasonal variation of the South Asian high (SAH) are discussed, too, and it is found that there are good relations between the monsoon onset time and the SAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and to north of 25°N, the TISM onsets at its south end. Comparison between the onset time such determined and that with other methodologies shows fair consistency in the SCS area and some differences in the IP area. 相似文献
19.
南海夏季风对华南夏季降水年代际变化的影响 总被引:14,自引:0,他引:14
华南夏季降水和南海夏季风都具有准两年的变化特征。研究表明:20世纪70年代以后,华南夏季降水年代际变化主要表现在准两年尺度平均方差的变化上,当准两年方差大时,相应的华南夏季降水多,反之亦然。但是在1976年以前南海夏季风对华南夏季降水的影响并不大,这似乎与两者准两年变化关系的年代际变化有关。南海夏季风和华南夏季降水的准两年变化在1953-1976年是弱的反位相变化关系,相反地,这一时段它们的非准两年变化成分有很强的正相关;在1977-2000年这一阶段,南海夏季风和华南夏季降水的准两年变化具有很强的正相关,但是它们的非准两年变化成分的相关性则很差。分析结果还表明,20世纪70年代大气环流的年代际变异使得华南夏季降水准两年变化在最近20多年成为其年际时间演变的主导成分。 相似文献
20.
This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China from 1971 to 2000.It is found that the memory of the soil temperature at 80-cm depth can persist for at least 2 months,and the soil temperature in May is closely linked to the EASM precipitation in June and July.When the soil temperature is warmer in May over Northwest China,less rainfall occurs over the Yangtze and Huaihe River valley but more rainfall occurs over South China in June and July.It is proposed that positive anomalous soil temperature in May over Northwest China corresponds to higher geopotential heights over the most parts of the mainland of East Asia,which tend to weaken the ensuing EASM.Moreover,in June and July,a cyclonic circulation anomaly occurs over Southeast China and Northwest Pacific and an anticyclonic anomaly appears in the Yangtze and Huaihe River valley at 850 hPa.All the above tend to suppress the precipitation in the Yangtze and Huaihe River valley.The results also indicate that the soil temperature in May over Northwest China is closely related to the East Asia/Pacific (EAP) teleconnection pattern,and it may be employed as a useful predictor for the East Asian summer monsoon rainfall. 相似文献