首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
贵州关岭大寨高速远程滑坡碎屑流研究   总被引:15,自引:1,他引:14  
2010年6月28日,贵州关岭因突降暴雨发生高速远程滑坡,滑程约1.5km,体积约174.9万m3,两个村组被毁,99人遇难。滑坡区位于西南地区常见的煤系地层区,上部为灰岩、白云岩,中部为相对较缓的砂岩地层,下部为页岩、泥岩地层,局部含煤,具有上硬下软的山体地质结构和上部富水下部隔水的水文地质结构,极易形成滑坡地质灾害。从地形上看,斜坡上陡下缓,形似靴状地形,上部陡峭地形导致山体易于失稳,而中下部开阔伸展良好的沟谷提供了远程的运动条件,较大的势能向动能的转化,容易形成高速远程滑坡碎屑流。6月27日和28日的降雨是触发此起特大灾害的主要原因,其24h降雨量达310mm,超过了当地近60a来的气象记录,分析表明,降雨产生的沟谷径流量是平时强降雨(100~150mmd-1)的沟谷径流的2倍之上,一是在滑源区砂岩裂隙岩体中形成静水压力和渗透压力,触使滑坡的失稳下滑; 二是在沟谷中产生地表径流,为碎屑流远程流动形成饱水下垫面,导致了碎屑流流动距离和速度的显著增加。近年来随着极端强降雨等灾害性天气的重现期缩短,高速远程滑坡造成的群死群伤特大地质灾害在我国呈逐渐增加趋势,应加强对这种灾害类型的调查与防范,特别是要进行滑坡安全避让范围和逃逸速度的研究。  相似文献   

2.
A catastrophic rock avalanche–mud flow was triggered by the heavy rainfall in Sichuan, China, on July 27, 2010. A mass of strongly weathered basalts with a volume of ∼480,000 m3 was initiated from a valley side slope and then moved downstream along the valley, entraining a large amount of unconsolidated substrate and bilateral materials and colluviums. The entrainment increased the volume of slide to ∼1.0 million m3 and may also enhance the mobility of the landslide. Approximately 30 min after the first failure, the deposits of the rock avalanche in the steepest part of the valley started to creep slowly down as a mud flow. It reached a small town at the foot of the slope after several hours, causing the damage of 92 houses and the urgent evacuation of 1,500 people. The field investigation, mapping, grain size test, and aerial photo interpretation were applied to analyze the dynamic process and the formation mechanism of the landslide. The strongly weathered and fragmented basalts as well as the most vulnerable combination of joint sets were revealed to be the most contributive factors. The antecedent torrential rainfall is the direct trigger, which affected the slope stability in three aspects: induced debris flow that scoured the toe of the sliding surface of rock avalanche; caused the increase of the slope unit weight, and penetrated into the steep joints reducing the strength of the materials.  相似文献   

3.
This paper uses the catastrophic rockslide at Sanxicun village in Dujianyan city as an example to investigate the formation mechanism of a rapid and long run-out rockslide-debris flow of fractured/cracked slope, under the application of a rare heavy rainfall in July 2013. The slope site could be affected by the Wenchuan Ms 8.0 Earthquake in 2008. The sliding involved the thick fractured and layered rockmass with a gentle dip plane at Sanxicun. It had the following formation process: (1) toppling due to shear failure at a high-level position, (2) shoveling the accumulative layer below, (3) forming of debris flow of the highly weathered bottom rockmass, and (4) flooding downward along valley. The debris flow destroyed 11 houses and killed 166 people. The run-out distance was about 1200 m, and the accumulative volume was 1.9?×?106 m3. The rockslide can be divided into sliding source, shear-shoveling, and flow accumulative regions. The stability of this fractured rock slope and the sliding processes are discussed at four stages of cracking, creeping, separating, and residual accumulating, under the applications of hydrostatic pressure and uplift pressure. This research also investigates the safety factors under different situations. The double rheological model (F-V model) of the DAN-W software is utilized to simulate the kinematic and dynamic processes of the shear-shoveling region and debris flow. After the shear failure occurred at a high-level position of rock, the rockslide moved for approximately 47 s downward along the valley with a maximum velocity of 35 m/s. This is a typical rapid and long run-out rockslide. Finally, this paper concludes that the identification of the potential geological hazards at the Wenchuan mountain area is crucial to prevent catastrophic rockslide triggered by heavy rainfall. The identified geological hazards should be properly considered in the town planning of the reconstruction works.  相似文献   

4.
近年来,在汶川地震等强震区常发生一种特大的高位滑坡地质灾害,它从高陡斜坡上部位置剪出并形成凌空加速坠落,具有撞击粉碎效应和动力侵蚀效应,导致滑体解体碎化,从而转化为高速远程碎屑流滑动或泥石流流动,并铲刮下部岩土体,使体积明显增加。新磨滑坡就是这种典型,它发生于2017年6月24日,滑坡后缘高程约3450m,前缘高程约2250 m,高差1200 m,水平距离2800 m,堆积体体积达1637×10~4m~3,摧毁了新磨村村庄,导致83人死亡。新磨滑坡地处叠溪较场弧形构造带前弧西翼,母岩为中三叠统中厚层变砂岩夹板岩,是1933年叠溪Ms7.5级震中区(烈度X度)和汶川Ms8.0级强震区(烈度IX度),形成震裂山体。滑源区分布多组不连续结构面,将厚层块状岩体分割成碎裂块体,在高程3150~3450 m区间形成明显的压裂鼓胀区,特别是存在2组反倾节理带,具有典型的"锁固段"失稳机理。滑坡体高位剪出滑动,连续加载并堆积于斜坡体上部,体积达390×10~4m~3,导致残坡积岩土层失稳并转化为管道型碎屑流;碎屑流高速流滑至斜坡下部老滑坡堆积体后,因前方地形开阔、坡度变缓,转化为扩散型碎屑流散落堆积,具有"高速远程"成灾模式。据此,可建立强震山区高位滑坡的早期识别方法,当陡倾山脊存在大型岩质高位滑坡时,应当考虑冲击作用带来的动力侵蚀效应和堆积加载效应,特别是沿沟谷赋存丰富的地下水时,发生高速远程滑坡的可能性将明显增加。因此,在地质灾害调查排查中,在高位岩质滑坡剪出口下方的斜坡堆积体上的聚居区等应划定为地质灾害危险区。在强震山区地质灾害研究中,不仅应采用静力学理论分析滑坡的失稳机理,而且应采用动力学方法加强运动过程的成灾模式研究。  相似文献   

5.
A strong earthquake (M J 6.9, M W 6.6–6.7) at about 11 km depth hit the western shore of the Noto Peninsula on Honshu, Japan, at about 00:42 coordinated universal time (9:42 a.m. local time) on 25 March 2007 (the Noto Hanto Earthquake in 2007). The earthquake triggered only 61 landslides, with most traveling short distances. It caused one long run-out landslide in the Nakanoya district of Monzen town, Wajima city, Ishikawa Prefecture, when a portion of a deep-seated landslide transformed into a moderate debris slide down a channel. The rock slide occurred on a south-facing convex-shaped slope on a small spur where earthquake ground shaking likely was strongly amplified by topography. A portion of the rock slide reached a small channel floored by materials containing abundant groundwater. Constant-volume box-shear tests on normally consolidated saturated specimens revealed that the apparent angle of internal friction of the channel-floor material was 33–36° at 10-mm shear displacement and did not show much decrease in effective normal stress during shearing. In situ rock-sliding testing on the exposed channel materials showed a low kinetic-friction angle of about 21°. We suggest that an unsaturated portion of the rock slide slid down the channel, with sliding between the rock-slide mass and the channel floor. Because the slope angle of the travel path nearly equaled the kinetic-friction angle, the unsaturated rock slide mass may have traveled at a moderately slow speed, or it might have decelerated and accelerated. Slow speed is supported by accounts from local residents that suggest movement of debris continued for 3 days after the main shock.  相似文献   

6.
The Niumiangou Creek rock avalanche was triggered by an Ms 8.0 earthquake that happened on 12 May 2008 in the Sichuan Province, China. The rock avalanche traveled a horizontal distance of 3.0 km over a vertical elevation difference of 0.89 km, equivalent to a coefficient of friction of only 0.29. The travel path of the rock avalanche can be divided into three segments: (1) failing and disintegrating, (2) flying, (3) flowing. In the failing and disintegrating segment, the rock slope failed because of the coupled action of horizontal and vertical force of the earthquake, then smashed into the opposite mountain and disintegrated. In the flying segment, the disintegrating rock mass changed direction and flew into the Lianhuaxin Creek, which was different from the previous research results that concluded rock debris flowed in Lianhuaxin Creek. A great amount of air trapped and compressed under the rock debris acted as air cushion and supported the rock debris to fly a further distance. In the flowing segment, the rock debris flowed on the ground surface in Niumiangou Creek. The flowing velocity has been estimated from the maximum elevation and runup according to the damaged trimlines of the debris. The saturated fine material in Niumiangou Creek entrained by the failed debris mass is thought to have contributed to the long runout of the debris. The Niumiangou Creek rock avalanche is one of the three longest rock avalanches triggered by Wenchuan earthquake. The conclusions of the paper have implications for hazard assessment of potential rock avalanches in the earthquake area and the other similar mountainous area in west China.  相似文献   

7.
Ogbonnaya Igwe 《Landslides》2013,10(4):515-521
The ICL/IPL Project achieved results in capacity building, investigation of landslides in West Africa and also evaluated some other slope movements in the region. These include the catastrophic rock–debris avalanche at the Cameroon–Nigeria border and the Iva Valley landslides in Enugu. During the avalanche, an estimated 100 M m3 of rock and debris was moved more than 2 km from the source of the slide at 600 m above sea level to the toe in the valley in a few minutes. The materials range from mud and soil debris to blocks of rocks up to 20 m in diameter. The grain size of moved material tended to increase upslope and closer to the head scarp though it tended to decrease again close to and at the source area. Nature and composition of the basement bedrock with foliation planes dipping in the direction of slope, dominant joint sets oriented perpendicularly to the foliation, the nature of weathered material and high relief were strong factors in the avalanche. Field studies identified 43 landslides at the Iva Valley area of Enugu state, which were shallow, short run-out movements with slip-surface depth less than 2 m. The shallow slides and the avalanche are triggered by water infiltration in slopes with high topographic gradient. The soil saturation leads to a reduction of the shear strength of the soil because of a rise in pore water pressure. These landslides are known to occur during or after intense rainfalls at the beginning or at the tail end of rainy season.  相似文献   

8.
How to evaluate debris slope stability reasonably is yet an urgent problem. The paper presents an applied method evaluating debris slope stability, using three-dimensional (3D) finite element contact algorithm based on the maximum shear stress theory. The Guanjia debris slope is located between K9 + 940 and K10 + 200 of Longli First-class Highway in Zhejiang, China. On its left slope, some cracks appeared at the end of 2002 and these were immediately backfilled, overlying a plastic membrane. However, many new cracks appeared on the slope during the rainfall in April 2003. Meanwhile, some small collapses and springs occurred in the front of the slope, and many cracks appeared on the middle part. The stability of the Guanjia debris slope was analyzed using the method proposed in the paper, the strength reduction finite element method, the imbalance thrust force method, Fellenius method, Janbu simplified method, Spencer’s method, Morgenstern–Price method and generalized limit equilibrium (GLE) method. The results show that: (1) the safety factors of the debris slope obtained using the imbalance thrust force method is the minimum in all limit equilibrium methods; (2) 1.07 and 1.06 are the safety factors of Section CC′ and DD′ (the middle part of this slope) of the Guanjia debris slope obtained using the method proposed (FEM with shear strength reduction technique based on the maximum shear stress theory) in this study, respectively, which reflect the slope actual condition in critical failure status; (3) the method proposed in this study may take into account the spatial effect of the debris slope, which makes the results of slope stability analysis more reasonable and reliable than other methods that can be used as a reference for the evaluation of stability of the same type of debris slope; and (3) further study should be done to confirm whether the proposed method in this study is suitable for other types of slopes.  相似文献   

9.
In this paper, we describe the investigations and actions taken to reduce risk and prevent casualties from a catastrophic 210,000 m3 rockslope failure, which occurred near the village of Preonzo in the Swiss Alps on May 15, 2012. We describe the geological predisposition and displacement history before and during the accelerated creep stage as well as the development and operation of an efficient early warning system. The failure of May 15, 2012, occurred from a large and retrogressive instability in gneisses and amphibolites with a total volume of about 350,000 m3, which formed an alpine meadow 1250 m above the valley floor. About 140,000 m3 of unstable rock mass remained in place and might collapse partially or completely in the future. The instability showed clearly visible signs of movements along a tension crack since 1989 and accelerated creep with significant hydromechanical forcing since about 2006. Because the active rockslide at Preonzo threatened a large industrial facility and important transport routes located directly at the toe of the slope, an early warning system was installed in 2010. The thresholds for prealarm, general public alarm, and evacuation were derived from crack meter and total station monitoring data covering a period of about 10 years, supplemented with information from past failure events with similar predisposition. These thresholds were successfully applied to evacuate the industrial facility and to close important roads a few days before the catastrophic slope failure of May 15, 2012. The rock slope failure occurred in two events, exposing a compound rupture plane dipping 42° and generating deposits in the midslope portion with a travel angle of 39°. Three hours after the second rockslide, the fresh deposits became reactivated in a devastating debris avalanche that reached the foot of the slope but did not destroy any infrastructure. The final run-out distance of this combined rock collapse–debris avalanche corresponded to the predictions made in the year 2004.  相似文献   

10.
The Cheam rock avalanche,Fraser Valley,British Columbia,Canada   总被引:1,自引:0,他引:1  
The Cheam rock avalanche, which occurred about 5,000 years ago in the lower Fraser Valley, British Columbia, is the largest known catastrophic landslide in western Canada (175×106 m3). A photo-draped digital elevation model of the rock avalanche reveals two morphologically distinct areas, an eastern area of arcuate hummocky ridges separated by flat-floored depressions and a lower western area with a subdued, gently rolling surface. Debris is up to 30 m thick and consists of rubbly, clast- and matrix-supported diamicton derived from local argillaceous metasedimentary rocks. Failure was probably caused by high pore water pressures on a thrust fault that daylights in the source area. Plastic deformation of sediment beneath the rock avalanche debris suggests that liquefaction occurred due to undrained loading when the debris struck the Cheam terrace. Liquefaction also explains the morphology and travel distance of the western debris lobe. The coincidence of well-sorted sands (the Popkum Series soil) with the rock avalanche debris indicates that significant amounts of water flowed over the surface of the landslide just after it came to rest. Stó:lõ Nation oral history suggests that the debris may have buried a village, causing the first known landslide fatalities in Canada.  相似文献   

11.
The Wenchuan earthquake triggered 15,000 rock avalanches, rockfalls and debris flows, causing a large number of causalities and widespread damage. Similar to many rock avalanches, field investigations showed that tensile failure often occurred at the back edge. Some soil and rock masses were moved so violently that material became airborne. The investigation indicates that this phenomenon was due to the effect of a large vertical seismic motion that occurred in the meizoseismal area during the earthquake. This paper analyses the effect of vertical earthquake force on the failure mechanism of a large rock avalanche using the Donghekou rock avalanche as an example. This deadly avalanche, which killed 780 people, initiated at an altitude of 1,300 m and had a total run-out distance of 2,400 m. The slide mass is mainly composed of Sinian limestone and dolomite limestone, together with Cambrian slate and phyllite. Static and dynamic stability analysis on the Donghekou rock avalanche has been performed using FLAC finite difference method software, under the actual seismic wave conditions as recorded on May 12, 2008. The results show that the combined horizontal and vertical peak acceleration caused a higher reduction in slope stability factor than horizontal peak acceleration alone. In addition, a larger area of tensile failure at the back edge of the avalanche was generated when horizontal and vertical peak acceleration were combined than when only horizontal acceleration was considered. The force of the large vertical component of acceleration was the main reason rock and soil masses became airborne during the earthquake.  相似文献   

12.
On 27 December 2011, a rock avalanche in the upper Val Bondasca in the southern Swiss Alps deposited 1.5–1.7 million m3 of rock debris. The following summer, debris flow activity in Val Bondasca was unusually high with four events after a 90‐year period of debris flow inactivity. This was an exceptional situation for the valley. Analysing the 2012 events, the long‐term record of meteorological conditions such as rainfall intensity and duration, in comparison with debris flow activity, suggests that the meteorological conditions in summer 2012 would not have triggered the high intensity debris flow events without additional sediment input. Consequently, the suddenly increased debris availability can be considered a major factor in these events. Interestingly, rainfall events of similar magnitude in the subsequent years 2013–2015 did not trigger additional debris flow events, indicating that debris flow initiation thresholds are increasing again, back towards pre‐rock avalanche levels. This study aims to help in understanding the so far poorly understood temporal evolution of debris flow triggering thresholds and the effect of sudden changes in sediment availability.  相似文献   

13.
During the three flood seasons following the Wenchuan earthquake in 2008, two catastrophic groups of debris flow events occurred in the earthquake-affected area: the 2008-9-24 debris flow events, which had a serious impact on rebuilding; and the 2010-8-13/14 debris flow events, which destroyed much of the progress made in rebuilding. The Wenjia gully is a typical post-earthquake debris flow gully and at least five debris flows have occurred there. As far as the 2010-8-13 debris flow is concerned, the deposits of the Wenjia gully debris flow reached a volume of 3.1 × 106 m3 in volume and hundreds of newly built houses were buried. This study took the Wenjia gully debris flow as an example and discussed the formation and characteristics of post-earthquake debris flow on the basis of field investigations and a remote sensing interpretation. The conclusions drawn from the investigation and analysis were as follows: (1) Post-earthquake debris flows were a joint result of both the earthquake and heavy rainfall. (2) Gully incision and loose material provision are key processes in the initiation and occurrence of debris flows and a cycle can be presented as the following process: runoff—erosion—collapse—engulfment—debris flow—further erosion—further collapse—further engulfment—debris flow enlargement. (3) The amount of rainfall that triggered debris flows from the Wenjia gully was significantly less than the average daily rainfall, while the intraday rainfall threshold decreased by at least 23.3%. (4) The occurrence mechanism of Wenjia gully debris flow was an erosion type and there was a positive relationship between debris flow magnitude and rainfall, which fitted an exponential model. (5) There were five representative characteristics of Wenjia gully debris flow: the long duration of the occurring process; the long distance of deposition chain conversion during the process of damage; magnification in the scale of debris flow; and the high frequency of debris flow events.  相似文献   

14.
2017年6月24日,四川省茂县叠溪镇新磨村发生高位顺层山体滑坡,滑动高差达1 160 m,滑动平距约2 200 m。该滑坡的滑动方量巨大,与其滑动过程中产生的铲刮效应有关。为分析其铲刮效应,文章通过现场调查、遥感影像解译和无人机航拍图像,确定该滑坡的滑动全过程为:多次历史地震造成滑坡源区岩体结构破碎,降雨沿顶部裂隙入渗导致水压力增大及石英砂岩中的薄层板岩软化,在长期疲劳效应下斜坡上部岩体最终发生滑动;上部滑体在运移过程中,对斜坡中部浅表风化层、部分基岩及下部老滑坡堆积体进行铲刮并重新堆积。采用Rockfall软件模拟源区滑体的运动路径、速度与能量,结果表明:在碎屑流区和老滑坡堆积区都存在明显的集中铲刮作用,整个滑坡的高危险区也主要位于该区域,所以危险性分区可代表不同滑坡区域的铲刮程度。计算得两个区域的铲刮方量分别为4.9×106,4.38×106 m3,滑坡总方量为13.35×106 m3。该模拟和计算方法迅速有效,可为以后类似滑坡的应急、救灾和铲刮方量计算提供参考。  相似文献   

15.
This paper describes the geomorphology of rock avalanche deposits that resulted from a major mountain slope failure at Keylong Serai on the north slope of the Indian High Himalaya, an area of high altitude desert. Cosmogenic 10Be exposure ages of the widespread deposits indicate their formation 7,510 ± 110 years BP. Proxy records for this region of the Himalaya imply a similar dry climatic regime to the present day at this time, suggesting that precipitation was an unlikely trigger for this rock avalanche. An alternative mechanism associated with rock-wall stress relaxation is also unlikely, given the earlier timing of deglaciation in this area. Given the enormous volume of debris generated by this event, the most likely trigger for this mountain collapse and resultant rock avalanche is high ground acceleration during a great earthquake (M > 8). It is proposed that rock avalanches can be used to extend the limited palaeoseismic record and improve information on the recurrence interval of great earthquakes within the Himalaya arc.  相似文献   

16.
S. C. Cox  S. K. Allen 《Landslides》2009,6(2):161-166
Rock avalanches fell from Vampire (2,645 m) Peak in the Southern Alps of New Zealand during January 2008. There were no direct witnesses, casualties or damage to infrastructure. Field observations indicate about 150,000 m3 (±50,000) of indurated greywacke collapsed retrogressively from a 73° slope between 2,380 and 2,520 m. Debris fell 800 m down Vampire’s south face and out 1.7 km across Mueller Glacier, with a 27.5° angle of reach. The resulting 300,000 m2 avalanche deposit contains three distinct lobes. The national seismograph network recorded two pulses of avalanche-type shaking, equivalent in amplitude to a M L 2.4 tectonic earthquake, for 60 s on Monday 7 January at 2349 hours (NZDT); then 45 s of shaking at M L 2.5 on Sunday 13 January at 0923 hours (NZDT). Deposit lobes are inferred to relate directly with shaking episodes. The avalanche fell across the debris from an older avalanche, which was also unwitnessed and fell from a different source on Vampire’s south face between February and November 2003. The 2003 avalanche involved 120,000 m3 (±40,000) of interlayered sandstone and mudstone which collapsed from a 65° slope between 2,440 and 2,560 m, then fell 890 m down across Mueller Glacier at a 24° angle of reach. Prolonged above-freezing temperatures were recorded during January 2008, but no direct trigger has been identified. The event appears to be a spontaneous, gravitationally induced, stress failure.  相似文献   

17.
At Lake Coleridge, Canterbury, New Zealand, at least three rock avalanches have been released from a single source area during the Holocene. The first of these was of 107 m3 volume and dates to about 9,750 BP, and two with volumes 5 × 105 and 4 × 104 m3 occurred about 700 BP. All three crossed the course of the Ryton River; the latter two were emplaced within the part of the first that had subsequently been eroded by the Ryton River. All three were most likely triggered by, or related to, seismicity. The first rock avalanche formed a long-lived landslide dam, and no evidence remains to indicate whether its eventual failure was catastrophic. The second formed a correspondingly smaller dam, but there is no evidence that its lake was long-lived; however, a set of anomalously steep outwash terraces downstream of the landslide deposits show that it failed catastrophically. A camping ground is sited about 1 km downstream of the landslide deposits, and proposals to develop it further risk potentially severe hazards from future rock avalanche activity at the site.  相似文献   

18.
强震条件下谢家店滑坡碎屑流发生机制试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
谢家店滑坡是5.12汶川大地震触发的较为典型的高速远程滑坡之一。通过滑坡岩体碎屑动荷载力学试验以及微结构特征分析,初步探讨了强震条件下滑坡碎屑流发生的动力学机制。结果表明:红色正长花岗岩的空隙和裂隙的发育程度均高于黑褐色砂岩;随着应变速率的增加,两种岩石的抗剪强度都有相应增加的趋势,且黑褐色砂岩的强度高于红色正长花岗岩;在加载速率持续增长的情况下,两种试样抗剪断强度拟合直线斜率相同,故强度增长速率相等;汶川地震使两种岩石均达到了其抗剪强度,所以岩体的剪切破坏是导致该滑坡发生的主要原因之一。  相似文献   

19.
2013年1月11日云南镇雄赵家沟特大滑坡灾害研究   总被引:12,自引:0,他引:12  
2013年1月11日,云南镇雄发生滑坡,滑程近800m,堆积体积约40104m3,赵家沟村民小组60多间房屋被毁, 46人遇难。本文对旱季期间少遇的镇雄赵家沟特大滑坡灾害原因进行了现场调查,运用有限元法分析了久雨和采矿条件下滑坡失稳机理。从地质上,滑坡位于乌蒙山区常见的煤系地层区,上部为陡倾的三叠系中统灰岩、白云岩,中部为相对较陡的三叠系下统砂页岩地层,下部为平缓的二叠系上统页岩、泥岩地层,局部含煤,具有上硬下软的工程地质结构和上部富水下部隔水的水文地质结构,极易形成滑坡地质灾害。在地形上,形似靴状地形,上部陡峭地形导致山体易于失稳,而中下部开阔伸展良好的沟谷提供了远程的运动条件,较大的势能向动能的转化,容易形成高速远程滑动,造成严重的损失。可将滑坡区分成滑坡源区、铲刮与堆积区、滑覆成灾区3部分,其中,高速飞行的滑体直接滑覆了赵家沟村民小组数间民房,同时,其余抛散的滑坡体沿低缓沟谷部位液化滑动冲埋多间村民房屋,成为特大灾害发生的重要原因。有限元模拟结果表明:堆积层斜坡的地下水位上升,可使赵家沟滑坡稳定系数降低10%以上,说明对位于陡坡沟谷中的残坡坡积物来说,持久小雨也可触发滑坡失稳; 由于滑坡下部煤层较薄,顶板地层完整且距滑床厚达200多米,在20世纪60~70年代小煤窑开采情况下,对滑坡变形失稳没有明显影响。通过此次特大滑坡引发的社会问题,作者提出了加强特大地质灾害公共危机管理科学应对、加强煤系地层地区高速远程滑坡早期识别与风险管理和加强复杂地质灾害防灾专业知识培训的建议。  相似文献   

20.
The May 12, 2008 Wenchuan, China Earthquake which measured Mw = 8.3 according to Chinese Earthquake Administration – CEA (Mw = 7.9 according to the USGS) directly triggered many landslides, which caused about 20,000 deaths, a quarter of the total. Rock avalanches were among the most destructive landslides triggered by this seismic event, and have killed more people than any other type of landslide in this earthquake. The Donghekou rock avalanche, one example of a catastrophic avalanche triggered by the Wenchuan earthquake, occurred in Qingchuan and buried one primary school and 184 houses, resulting in more than 780 deaths, and in addition, caused the formation of two landslide dams, which formed barrier lakes.Combining aerial images (resolution of 0.5 m) with field investigations, this paper lists some parameters of 66 cases in one table, and details source characteristics of six typical cases. It has been found that most of the long runout rock avalanches have source areas with high relief and steep inclination, causing the debris in the travel courses to accelerate. There was also a large amount of saturated Holocene-age loose deposits formed by a river or gully that existed in the travel courses. Comparison studies indicate that saturated Holocene loose deposits in the travel courses could be the most important factor for the causes of the long runout characteristic of the rock avalanches especially when they traveled over gentle or even flat ground surfaces.Furthermore, the relationships among the relief slope gradient, runout and covered area are investigated, and a threshold line for predicting the maximum horizontal runout distance under certain change in elevation is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号