首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction equations of two nonlinear gravitational waves in baroclinic atmosphere are presented via multi-scale perturbation method,which can be classified into coupling nonlinear Schrodinger equations.In particular,the interaction course of two nonlinear gravitational waves of basic flow in vertical linear and quadratic shear is illustrated.Numerical calculation displays that wave amplitude enlarges and wave width narrows when two solitary gravitational waves meet and chase;that basic flow with single shear is more beneficial than that with quadratic shear to the interaction of two nonlinear wave packets;and that the interaction of two wave packets makes wave shape change more greatly and energy more dispersive,which contributes to the occurrence of changeable weather.Therefore,one of the probable mechanisms for the appearance of strong convection weather is the interaction between mesoscale nonlinear gravitational waves.  相似文献   

2.
大气边界层强风的阵性和相干结构   总被引:9,自引:5,他引:9  
我国北方春季冷锋过境后,常骤发强风,甚至起沙扬尘,持续数小时甚至一二天,通过对边界层超声风温仪的资料分析,可知大风常叠加有周期为3~6 min的阵风,较有规律,且有明显的相干结构:阵风风速峰期有下沉运动,谷期有上升运动;阵风扰动以沿平均流的顺风方向分量为主,横向和垂直方向的分量都较小,其本质是低频次声波和重力波的混合;阵风沿顺风向且向下传播.周期小于1 min的脉动在水平面上基本是各向同性的不规则的湍涡.大风期间,无论是平均流、阵风和湍流脉动,至少在120 m高度以下,主要都有西风和北风动量下传,感热上传.平均流的动量下传强于由脉动下传的量,与一般天气情况不同,而且阵风与湍流的动量下传的量值差不多.平均流和阵风在动量传送上起相当大的作用.  相似文献   

3.
Monthly or seasonally mean anomalies of large-scale atmospheric circulation are better represented by wave packets or their combination. Both qualitative and quantitative analyses of equations of wave packet dynamics, which are obtained by the use of WKB approximation, are very helpful for the understanding of structure, formation and propagation of stationary and quasi-stationary planetary wave packet patterns in the atmosphere. Indeed, these equations of wave packet dynamics can be directly solved by the method of characteristic lines, and the results can be simply and clearly interpreted by physical laws. In this paper, a quasi-geostrophic barotropic model is taken for simplicity, and the wave packets superimposed on several ideal profiles of the basic current and excited by some ideal forcings are investigated in order to make comparison of the accuracy of calculation with the analytical solution. It is revealed that (a) the rays of stationary planetary wave packet do not coincide with but go away from the great circle with significant difference if the shear of the basic zonal flow is not too small; (b) being superimposed on a westerly jet flow with positive shear (Uλ/y>0), the stationary wave packets excited by low-latitudinal forcing are first intensified during their northeastward propagation in the Northern Hemisphere, then reach their maximum of amplitude at some critical latitude, and after that weaken again; (c) the connected line of extremes (the positive and negative centres) of wave packet does not coincide with but crosses the ray by an angle, the larger the scale of external forcing, the larger the angle; and (d) the whole pattern of a trapped stationary wave packet is complicated by the interference between the incident and reflected waves.  相似文献   

4.
非平直基流中尺度扰动的对称发展   总被引:6,自引:0,他引:6  
用f平面非静力平衡滤声波模式,在自然坐标系下,运用WKBJ方法及能量方法研究了非平直基流对中尺度扰动波包发展问题。结果表明:中尺度波包对称发展主要取决于扰动波结构与背景结构之间的匹配。  相似文献   

5.
利用NCEP/NCAR再分析和全国740站逐日降水资料,运用一点滞后相关等方法,对2007年夏季江淮流域强降水期间低频振荡的波动活动特征及其与降水低频变化的联系进行了分析。结果表明,在2007年夏季降水中,降水低频分量起着重要作用。降水的低频振荡主周期为10~30d,降水距平时间序列与10~30d低频分量具有较好的对应关系。低频扰动在对流层上层和低层都呈现波列状分布,且在降水活跃位相时,低频环流在高、低层具有斜压结构。在对流层上层,低频扰动有缓慢的东移倾向,相速度为每天2~3个经度。西风带中存在多次移动性波列向下游的传播,且在120°E以西以每天14经度的群速度向下游频散能量,表明10~30d低频波动具有明显的下游发展特征。在强降水开始5d前,低频波动与能量可起源于高纬的乌拉尔山附近,沿着西北-东南向的路径向下游传播。下游发展的低频波动为江淮流域带来了能量,为强降水的发生提供了条件。这些结果加深了人们对低频波动在江淮流域强降水过程中所起作用的认识,可为寻找江淮流域强降水过程预报线索提供科学依据。  相似文献   

6.
In southern China,cold air is a common weather process during the winter season;it can cause strong wind,sharp temperature decreases,and even the snow or freezing rain events.However,the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data,especially regarding turbulence.In this study,four-layer gradient meteorological observation data and one-layer,10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China.The results show that,with the passage of a cold air front,the wind speed exhibits low-frequency variations and that the wind systematically descends.During the strong wind period,the wind speed increases with height in the surface layer.Regular gust packets are superimposed on the basic strong wind flow.Before the passage of cold air,the wind gusts exhibit a coherent structure.The wind and turbulent momentum fluxes are small,although the gusty wind momentum flux is slightly larger than the turbulent momentum flux.However,during the invasion of cold air,both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed,and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period.After the cold air invasion,this structure almost disappears.  相似文献   

7.
Properties and stability of a meso-scale line-form disturbance   总被引:1,自引:0,他引:1  
By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal line-like disturbance moving at any angle with respect to basic flow, arriving at the following results: (1) with linear shear available, the heterotropic instability of the disturbance will occur only when flow shearing happens in the direction of the line-like disturbance movement or in the direction perpendicular to the disturbance movement, with the heterotropic instability showing the instability of the internal inertial gravity wave; (2) in the presence of second-order non-linear shear, the disturbance of the heterotropic instability includes internal inertial gravity and vortex Rossby waves. For the zonal line-form disturbance under study, the vortex Rossby wave has its source in the second-order shear of meridional basic wind speed in the flow and propagates unidirectionally with respect to the meridional basic flow. As a mesoscale heterotropic instable disturbance, the vortex Rossby wave has its origin from the second shear of the flow in the direction perpendicular to the line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line-like disturbances, if the second-order shear happens in the meridional wind speed, i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the heterotropic instability of the disturbance is likely to be the instability of a mixed Rossby–internal inertial gravity wave; (4) the symmetric instability is actually the instability of the internal inertial gravity wave. The second-order shear in the flow represents an instable factor for a symmetric-type disturbance; (5) the instability of a traversal-type disturbance is the instability of the internal inertial gravity wave when the basic flow is constant or only linearly sheared. With a second or nonlinear vertical shear of the basic flow taken into account, the instability of a traversal-type disturbance may be the instability of a mixed vortex Rossby – gravity wave.  相似文献   

8.
2002年和2003年春季中国沙尘暴形成和输送的对比分析   总被引:1,自引:0,他引:1  
2002年春季中国华北和东北发生了数场强沙尘暴天气.而2003年春季沙尘暴发生次数较少且强度也弱.为了解这两年沙尘暴差异的原因,作者用NCEP/NCAR再分析资料对两年中3、4月份候距平进行了分析.从侯距平图可看出,2002年负距平区主要位于华北和东北,并与发生大范围沙尘暴天气的区域相吻合,这与东亚大槽的发展与演变有关.在2003年高度场的距平图中,高度场的负侯距平多位于我国西部,这是因中纬度长波槽是在西部地区发展形成的.从月平均风资料分析,2002年风速大于6 m s-1的区域也与强沙尘暴区一致.2003年两个月中,我国大部地区风速都偏小.虽然2003年4月在东北有大于6 m s-1的风区,但不在我国主要的沙漠化地区.通过对大气环流及地表参数的分析,作者认为沙尘暴的易发地区多是干旱与半干旱地区,植被的生长能力弱;在降水没有比常年显著增加并使地面植被生长有明显改善的情况下,大气动力因素相对地面参数而言是主导沙尘暴年际变化的主要因子.  相似文献   

9.
分层气流条件下地形降水的二维理想数值试验   总被引:1,自引:0,他引:1  
杨婷  闵锦忠  张申龑 《气象科学》2017,37(2):222-230
利用WRF v3.5中尺度数值模式,在条件不稳定层结下,针对分层气流(基本气流风速和大气湿浮力频率呈二层均匀分布)过山时,地形对降水的影响进行了多组二维理想数值试验,以研究不同高度、尺度山脉和不同方向基本气流对降水形态和分布的影响。模拟结果表明,地形重力波触发对流是地形降水的主要机制之一,地形波的特征(波长、振幅)和传播均受到地形和基本气流的影响,其中,强基本气流流经高而陡峭的山脉时,更容易在其背风坡捕捉到重力波,地形降水呈现多种模态,反之亦然;当改变基本气流与山脉交角时,主要通过影响地形强迫抬升速度、基流对波动稳定性发展来进一步影响地形降水的强度和分布。  相似文献   

10.
SymmetricDevelopmentofMesoPerturbationinZonalyCurvedBasicFlow①ZhouWeican(周伟灿),ChenJiukang(陈久康)andZhouShunwu(周顺武)NanjingInstit...  相似文献   

11.
建立了具有瑞利摩擦且仅考虑大洋西海岸或同时考虑大洋东、西海岸的两层正压准平衡海洋模型,并做了解析求解,用以研究中纬度的自由涡旋波。得到的主要结论有:模型中该波动的解为波包。在仅考虑大洋西海岸时该波包的载频频率是连续谱;而同时考虑大洋东、西海岸时其为离散谱;且均有载频频率越高(周期越短)水平尺度越大的特点,对过分低频的波动,则会使准平衡的假定不再适用。模型中该波动波包载频的周期约在26天至24年。因考虑了摩擦,该波包的振幅随时间呈指数衰减,但摩擦系数的大小仅影响其衰减程度而不改变其空间结构,最终该波包振幅趋于0,故该两层正压海洋模型的解就趋于大气风场的强迫特解。模型中该波包的载频都是西传的;频率较高则西传较快,波包的特性和变形都很明显;频率低,则西传慢,其波形接近平面简谐波。在该两层正压模型中,该波动上层流场与正压模型中的流动类似,而下层海洋流动则其流速与上层海洋相同,而流向相反。该模型中该波动的性质是准平衡(准无辐散)的涡旋波,当摩擦不太大且其水平尺度在10km以上时,其性质则为准地转的Rossby波。  相似文献   

12.
使用探空、地面和张掖多普勒天气雷达观测资料对2013年7月30日发生在河西走廊的一次强沙尘暴天气进行了分析。结果表明:这次雷暴大风沙尘天气是对流层低层冷平流作用下,不稳定能量释放形成的β、γ中尺度对流系统造成的,雷暴下击暴流的辐散流和密度流是引发地面强风和沙尘暴的直接因素。高层干、中层相对湿和低层干的层结,易产生雷暴大风天气。1 h正变压和负变温演变能很好地反映雷暴下击暴流形成的雷暴高压和冷池的强弱变化,同时也反映了下击暴流的辐散气流和冷池密度流造成的地面大风及沙尘天气的变化。  相似文献   

13.
Wave ray theory is employed to study features of propagation pathways(rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind(RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.  相似文献   

14.
新疆克拉玛依强下坡风暴的机理研究   总被引:1,自引:0,他引:1  
卢冰  史永强  王光辉  岳斌 《气象学报》2014,72(6):1218-1230
利用美国中尺度数值模式 WRF 对2013年3月7—8日克拉玛依强风进行了模拟,对下坡风发生、发展和结束3个阶段的三维结构特征进行了分析,并由此提出克拉玛依强下坡风的形成机制模型:上游地区出现中高层西南风、低层西北风并伴有强冷平流的配置,当风速不断增大时,气流能够翻越加依尔山在背风坡侧形成重力波,重力波相位向气流上游方向倾斜产生非线性效应,促进了波不稳定区域的形成并导致波破碎,形成湍流活跃层,不断把上层的能量向下传播;克拉玛依中低层形成三层夹心的大气层结稳定度分布,出现明显的过渡气流带从而导致强下坡风的形成;南北风分量在低层和中层符号相反,形成了临界层,不断吸收上层波能量并向地面传送,强下坡风暴不断维持发展。最后利用2006—2012年克拉玛依33个强下坡风过程中的探空观测资料对提出的形成机制进行了验证。  相似文献   

15.
The blocking and trapping of waves and wave packets by inhomogeneous flow fields were studied in a laboratory setting. Evidence for multiple reflections and thus trapping within the current gradient zone near the blocking point are the main results obtained, and lead to the following conclusions: (1) a strong current gradient zone near the blocking point can trap wave energy, which will shift the wavenumbers into the capillary region, to match the microwave wavelength of many remote sensing instruments; (2) this mechanism provides a direct link between strong current gradient zones (bathymetric features in tidal flows, eddies, current boundaries, etc.) and the surface wave structure, which in turn allows instruments such as the Synthetic Aperture Radar (SAR) to form images of bottom features based solely on the small wave conditions; (3) an indication of direct energy transfer from the carrier waves to low-frequency waves was also observed, and resolved by wavelet analsysis. The instantaneous spectra from wavelet analysis reveal that a large portion of wave energy transfers directly into the low-frequency band from the carrier waves at the trapping zone. Subharmonics may play a critical role in the energy transfer process, but details are still to be established.  相似文献   

16.
Based on a barotropic vortex model, generalized energy-conserving equation was derived and two necessary conditions of basic flow destabilization are gained. These conditions correspond to generalized barotropic instability and super speed instability. They are instabilities of vortex and gravity inertial wave respectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which is similar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km. The results show that generalized barotropic instability depending upon the radial gradient of relative vorticity can appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.  相似文献   

17.
采用天气雷达径向风场基数据,提取其所含数值特征定量信息,并构建几种强对流指标。采用对区域流场特征表达能力良好的流函数与势函数计算,并运用合适的边界条件及计算处理方案,由泊松方程迭代求出满足区域无辐散条件的特解,进一步通过逆运算重建径向风场及运用交叉相关统计方法,检验重建效果,显示由所用边界处理方案解出的区域流函数与势函数是收敛的,能够清晰表达径向风场特征。并运用径向风数值信息以及它们与局地强对流的密切关系,构建区域强对流时空预警指标方程,依托预警指标,提供径向风场分区精细化预警区位和时间演变状态。根据局地暴雨的径向风特征,运用矩阵转换技术开发了径向风辐合线客观自动识别方法,可提供径向风辐合线的具体地理位置,尺度大小,走向分布,覆盖范围以及动态追踪等定量信息。进一步地将径向风辐合线与径向风定量信息背景场叠加,获得直观的精细化局地强对流中小尺度系统时空预报预警方法。  相似文献   

18.
The East Asian subtropical westerly jet(EASWJ) is one of the most important factors modulating the Meiyu rainfall in the Yangtze-Huaihe River Basin, China. This article analyzed periods of the medium-term EASWJ variation,wave packet distribution and energy propagation of Rossby waves along the EASWJ during Meiyu season, and investigated their possible influence on abnormal Meiyu rain. The results showed that during the medium-term scale atmospheric dynamic process, the evolution of the EASWJ in Meiyu season was mainly characterized by the changes of3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves. The strong perturbation wave packet and energy propagation of the 3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves are mostly concentrated in the East Asian region of 90°-150°E, where the two wave trains of perturbation wave packets and wave-activity flux divergence coexist in zonal and meridional directions, and converge on the EASWJ. Besides, the wave trains of perturbation wave packet and wave-activity flux divergence in wet Meiyu years are more systematically westward than those in dry Meiyu years, and they are shown in the inverse phases between each other. In wet(dry) Meiyu year, the perturbation wave packet high-value area of the 10-15 d low-frequency variability is located between the Aral Sea and the Lake Balkhash(in the northeastern part of China), while over eastern China the wave-activity flux is convergent and strong(divergent and weak), and the high-level jets are strong and southward(weak and northward). Because of the coupling of high and low level atmosphere and high-level strong(weak) divergence on the south side of the jet over the Yangtze-Huaihe River Basin, the low-level southwest wind and vertically ascending motion are strengthened(weakened), which is(is not)conducive to precipitation increase in the Yangtze-Huaihe River Basin. These findings would help to better understand the impact mechanisms of the EASWJ activities on abnormal Meiyu from the perspective of medium-term scale Rossby wave energy propagation.  相似文献   

19.
The solutions of downslope motions over a sloping terrain are solved analytically in terms of the atmos-pheric wave equations with a two-layer model.The physical meanings of the solutions are discussed.As thelower layer of the atmosphere is stable and deep with strong wind the solution represents strong downslopewind,while as the lower layer is strong stable with light wind the drainage flow is obtained.The dependenceof the strength of downslope motion on the atmospheric stratification,wind field structure as well as Scorerparameter is also examined.  相似文献   

20.
桑建国 《气象学报》1989,47(2):191-198
本文采用二层模式,在一个斜坡地形上,求解大气波动方程,得出了下坡运动的普遍分析解,并对解在不同大气条件和地形条件下的物理意义做了分析。当下层大气厚而稳定、风速较强时,得到的是背风坡大风。而当下层大气强稳定、小风时,得到的是泄流风。对各类下坡运动近地面风速和大气层结、流场结构及Scorer参数之间的关系也做了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号