首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.  相似文献   

2.
This paper investigates how using different regional climate model (RCM) simulations affects climate change impacts on hydrology in northern Europe using an offline hydrological model. Climate change scenarios from an ensemble of seven RCMs, two global climate models (GCMs), two global emissions scenarios and two RCMs of varying resolution were used. A total of 15 climate change simulations were included in studies on the Lule River basin in Northern Sweden. Two different approaches to transfer climate change from the RCMs to hydrological models were tested. A rudimentary estimate of change in hydropower potential on the Lule River due to climate change was also made. The results indicate an overall increase in river flow, earlier spring peak flows and an increase in hydropower potential. The two approaches for transferring the signal of climate change to the hydrological impacts model gave similar mean results, but considerably different seasonal dynamics, a result that is highly relevant for other types of climate change impacts studies.  相似文献   

3.
The first part of this paper demonstrated the existence of bias in GCM-derived precipitation series, downscaled using either a statistical technique (here the Statistical Downscaling Model) or dynamical method (here high resolution Regional Climate Model HadRM3) propagating to river flow estimated by a lumped hydrological model. This paper uses the same models and methods for a future time horizon (2080s) and analyses how significant these projected changes are compared to baseline natural variability in four British catchments. The UKCIP02 scenarios, which are widely used in the UK for climate change impact, are also considered. Results show that GCMs are the largest source of uncertainty in future flows. Uncertainties from downscaling techniques and emission scenarios are of similar magnitude, and generally smaller than GCM uncertainty. For catchments where hydrological modelling uncertainty is smaller than GCM variability for baseline flow, this uncertainty can be ignored for future projections, but might be significant otherwise. Predicted changes are not always significant compared to baseline variability, less than 50% of projections suggesting a significant change in monthly flow. Insignificant changes could occur due to climate variability alone and thus cannot be attributed to climate change, but are often ignored in climate change studies and could lead to misleading conclusions. Existing systematic bias in reproducing current climate does impact future projections and must, therefore, be considered when interpreting results. Changes in river flow variability, important for water management planning, can be easily assessed from simple resampling techniques applied to both baseline and future time horizons. Assessing future climate and its potential implication for river flows is a key challenge facing water resource planners. This two-part paper demonstrates that uncertainty due to hydrological and climate modelling must and can be accounted for to provide sound, scientifically-based advice to decision makers.  相似文献   

4.
The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.  相似文献   

5.
River discharge to the Baltic Sea in a future climate   总被引:1,自引:0,他引:1  
This study reports on new projections of discharge to the Baltic Sea given possible realisations of future climate and uncertainties regarding these projections. A high-resolution, pan-Baltic application of the Hydrological Predictions for the Environment (HYPE) model was used to make transient simulations of discharge to the Baltic Sea for a mini-ensemble of climate projections representing two high emissions scenarios. The biases in precipitation and temperature adherent to climate models were adjusted using a Distribution Based Scaling (DBS) approach. As well as the climate projection uncertainty, this study considers uncertainties in the bias-correction and hydrological modelling. While the results indicate that the cumulative discharge to the Baltic Sea for 2071 to 2100, as compared to 1971 to 2000, is likely to increase, the uncertainties quantified from the hydrological model and the bias-correction method show that even with a state-of-the-art methodology, the combined uncertainties from the climate model, bias-correction and impact model make it difficult to draw conclusions about the magnitude of change. It is therefore urged that as well as climate model and scenario uncertainty, the uncertainties in the bias-correction methodology and the impact model are also taken into account when conducting climate change impact studies.  相似文献   

6.
自然气候变异与人为气候变化对径流影响研究进展   总被引:5,自引:0,他引:5  
 在回顾IPCC于1990-2007年4次关于气候变化对径流影响的评估报告进展的基础上,将第一次与第二次评估报告归纳为第一代--以气候均值变化对径流影响及其适应为主要特征;第三次与第四次评估报告为第二代--突出人为气候变化与自然气候变异对径流影响及其适应问题,分析了常规的气候变化对水文水资源影响评估方法的发展过程及存在的问题。研究结果反映了年代际时间尺度的自然气候变异的影响,而未能考虑与极端事件发生频次和强度变化密切相联的日、季和年际尺度的气候变异的影响,从而低估了气候变暖对洪水、干旱以及农业灌溉需水的负面作用。在介绍国内外研究的基础上,为第五次IPCC评估报告提出了加强交叉学科综合研究的建议。  相似文献   

7.
在回顾IPCC于1990-2007年4次关于气候变化对径流影响的评估报告进展的基础上,将第一次与第二次评估报告归纳为第一代--以气候均值变化对径流影响及其适应为主要特征;第三次与第四次评估报告为第二代--突出人为气候变化与自然气候变异对径流影响及其适应问题,分析了常规的气候变化对水文水资源影响评估方法的发展过程及存在的问题。研究结果反映了年代际时间尺度的自然气候变异的影响,而未能考虑与极端事件发生频次和强度变化密切相联的日、季和年际尺度的气候变异的影响,从而低估了气候变暖对洪水、干旱以及农业灌溉需水的负面作用。在介绍国内外研究的基础上,为第五次IPCC评估报告提出了加强交叉学科综合研究的建议。  相似文献   

8.
Potential global climate change impacts on hydrology pose a threat to water resources systems throughout the world. The California water system is especially vulnerable to global warming due to its dependence on mountain snow accumulation and the snowmelt process. Since 1983, more than 60 studies have investigated climate change impacts on hydrology and water resources in California. These studies can be categorized in three major fields: (1) Studies of historical trends of streamflow and snowpack in order to determine if there is any evidence of climate change in the geophysical record; (2) Studies of potential future predicted effects of climate change on streamflow and; (3) Studies that use those predicted changes in natural runoff to determine their economic, ecologic, or institutional impacts. In this paper we review these studies with an emphasis on methodological procedures. We provide for each category of studies a summary of significant conclusions and potential areas for future work.  相似文献   

9.
21世纪珠江流域水文过程对气候变化的响应   总被引:4,自引:0,他引:4  
应用HBV-D水文模型和多个气候模式预估了不同温室气体排放情景下珠江主干流西江的径流过程,分析了21世纪水资源量和洪水频率的变化。结果表明:2050年后年降水量和年径流量较基准期(1961—1990年)明显增加;流域平均的月降水量和径流量在5—10月间均呈增加趋势,12月至次年2月呈减少趋势;年最大1 d和7 d洪量逐渐增加,重现期逐渐缩短。2030年前枯水期径流增加有望缓解枯水期用水压力,而2050年之后丰水期径流量以及洪水强度、发生频率的增加将给珠江流域防汛抗洪带来更大压力,在制订气候变化对流域水资源影响适应性对策时应考虑这两方面的影响。  相似文献   

10.
The natural Australian landscape sustains a mosaic of wetlands that range from permanently wet to temporary. This diversity of wetland types and habitats provides for diverse biotic communities, many of which are specific to individual wetlands. This paper explores the prospects for southern Australian wetlands under modified water regime and salinity induced by climatic changes. Extended droughts predicted as a consequence of climate change (lower rainfall and higher temperatures) combined with human-induced changes to the natural hydrological regime will lead to reductions in the amount of water available for environmental and anthropogenic uses. Reduced runoff and river flows may cause the loss of some temporary wetland types that will no longer hold water long enough to support hydric communities. Species distributions will shift and species extinctions may result particularly across fragmented or vulnerable landscapes. Accumulation of salts in wetlands shift species-rich freshwater communities to species-poor salt tolerant communities. Wetlands will differ in ecological response to these changes as the salinity and drying history of each wetland will determine its resilience: in the short term some freshwater communities may recover but they are unlikely to survive and reproduce under long term increased salinity and altered hydrology. In the long term such salinized wetlands with altered hydrology will need to be colonized by salt tolerant species adapted for the new hydrological conditions if they are to persist as functional wetlands. As the landscape becomes more developed, to accommodate the need for water in a warmer drying climate, increasing human intervention will result in a net loss of wetlands and wetland diversity.  相似文献   

11.
This research investigates the effect of climate change on the thermal structure of lakes in response to watershed hydrology. We applied a hydrodynamic water quality model coupled to a hydrological model with a future climate scenario projected by a GCM A2 emission scenario to the Yongdam Reservoir, South Korea. In the climate change scenario, the temperature will increase by 2.1°C and 4.2°C and the precipitation will increase by 178.4?mm and 464.4?mm by the 2050 and 2090, respectively, based on 2010. The pattern changes of precipitation and temperature increase due to climate change modify the hydrology of the watershed. The hydrological model results indicate that they increase both surface runoff itself and temperature. The reservoir model simulation with the hydrological model results showed that increasing air temperature is related to higher surface water temperature. Surface water temperature is expected to increase by about 1.2°C and 2.2°C from the 2050 and 2090, respectively, based on the 2010 results. The simulation results of the effects of climate warming on the thermal structure of the Asian Monsoon Area Lake showed consistent results with those of previous studies in terms of greater temperature increases in the epilimnion than in the hypolimnion, increased thermal stratification, and decreasing thermocline depths during the summer and fall. From this study, it was concluded that the hydrodynamic water quality model coupled to the hydrological model could successfully simulate the variability of the epilimnetic temperature, changed depth and magnitude of the thermocline and the changed duration of summer stratification.  相似文献   

12.
综述了区分气候变化和人类活动对水文要素影响的研究方法,提出当前研究中应将流域水文过程变化的环境因素来源分为气候自然变异、人为气候变化和人类活动三个方面,并给出了方法体系;基于环境变化下流域水文过程的复杂不确定性,详细剖析了环境变化下流域水文过程的不确定性来源,总结了常用的不确定性评估方法,并介绍了针对定性不确定性(奈特不确定性)评估的信息差距理论。指出为提高减缓和适应环境变化能力,未来应加强以气候自然变异、人为气候变化和人类活动三源分解的环境变化影响研究;不确定性分析应成为环境模拟的固有组成部分,在影响评价中应注重不确定性的评估,并应加强不确定性信息在流域管理决策中的应用研究以及流域风险管理研究。  相似文献   

13.
 The impact of climate change on the hydrology of continental surfaces is critical for human activities but the response of the surface to this perturbation may also affect the sensitivity of the climate. This complex feedback is simulated in general circulation models (GCMs) used for climate change predictions by their land-surface schemes. The present study attempts to quantify the uncertainty associated with these schemes and what impact it has on our confidence in the simulated climate anomalies. Four GCMs, each coupled to two different land-surface schemes, are used to explore the spectrum of uncertainties. It is shown that, in this sample, surface processes have a significant contribution to our ability to predict surface temperature changes and perturbations of the hydrological cycle in an environment with doubled greenhouse gas concentration. The results reveal that the uncertainty introduced by land-surface processes in the simulated climate is different from its impact on the sensitivity of GCMs to climate change, indeed an alteration of the surface parametrization with little impact on model climate can affect sensitivity significantly. This result leads us to believe that the validation of land-surface schemes should not be limited to the current climate but should also cover their sensitivity to variations in climatic forcing. Received: 24 June 1999 / Accepted: 20 April 2000  相似文献   

14.
Sevinc Ozkul 《Climatic change》2009,97(1-2):253-283
IPCC Fourth Assessment Report (AR4) discloses that the global climate system is undoubtedly warming. Observations have shown that many natural systems, including hydrologic systems and water resources, are being affected by regional climate changes, particularly temperature increases. Eventually, these effects will have to be considered in water resources planning and management. Accordingly, need is indicated to evaluate the impact of expected climate change on hydrology and water resources at regional and local levels. The presented paper summarizes the results of the sub-project studies under the United Nations Development Program-Global Environment Facility (UNDP-GEF) Project. The studies cover the generation of climate change scenarios, modeling of basin hydrology, and testing the sensitivity of runoff to changes in precipitation and temperature. Simulation results of the water budget model have shown that nearly 20% of the surface waters in the studied basins will be reduced by the year of 2030. By the years 2050 and 2100, this percentage will increase up to 35% and more than 50%, respectively. The decreasing surface water potential of the basins will cause serious water stress problems among water users, mainly being agricultural, domestic and industrial water users.  相似文献   

15.
Although representation of hydrology is included in all regional climate models (RCMs), the utility of hydrological results from RCMs varies considerably from model to model. Studies to evaluate and compare the hydrological components of a suite of RCMs and their use in assessing hydrological impacts from future climate change were carried out over Europe. This included using different methods to transfer RCM runoff directly to river discharge and coupling different RCMs to offline hydrological models using different methods to transfer the climate change signal between models. The work focused on drainage areas to the Baltic Basin, the Bothnian Bay Basin and the Rhine Basin. A total of 20 anthropogenic climate change scenario simulations from 11 different RCMs were used. One conclusion is that choice of GCM (global climate model) has a larger impact on projected hydrological change than either selection of emissions scenario or RCM used for downscaling.  相似文献   

16.
Global, national, and regional assessments of the potential effects of Global Climate Change (GCC) have been recently released, but not one of these assessments has specifically addressed the critical issue of the potential impacts of GCC on ephemeral freshwater systems (EFS). I suggest that this is a major oversight as EFS occur in various forms across the globe. In the northeastern United States, these systems, whether ephemeral (“vernal”) pools or ephemeral or intermittent headwater streams are abundant and provide unique habitats critical to the maintenance of forest biodiversity. Since the hydrology of these waterbodies is strongly affected by weather patterns (in the short-term) or climate (long-term), they are especially sensitive to climate change. In this essay, I review the literature on relationships between climate and hydrology of EFS and on relationships between hydrology and ecology of these systems. I then conclude with my assessment of potential impacts of GCC on the hydrology of EFS and implications for their ecology. The focus of this essay will be on EFS of the forests of the northeastern United States, but will include literature from other regions as they relate to the general relationships between GCC and EFS.  相似文献   

17.
生态水文过程是生态水文学的重要研究内容,是生态系统中水文过程和生态过程通量变化问的互馈关系。油蒿(Artemisiaordosica)作为我国特有的优良固沙物种,在荒漠生态系统重建与恢复中起着非常重要的作用。本文以生态水文学为指导思想,综述研究了降水、冠层降雨再分配、根系水分再分配、土壤水分变化、蒸散发以及油蒿群落演替等生态、水文过程中油蒿与水文环境间的相互作用关系,提出现存的问题和未来研究应关注的方向,为后续研究提供理论依据。  相似文献   

18.
Understanding the response of the global hydrological cycle to recent and future anthropogenic emissions of greenhouse gases and aerosols is a major challenge for the climate modelling community. Recent climate scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change are analysed here to explore the geographical origin of, and the possible reasons for, uncertainties in the hydrological model response to global warming. Using the twentieth century simulations and the SRES-A2 scenarios from eight different coupled ocean–atmosphere models, it is shown that the main uncertainties originate from the tropics, where even the sign of the zonal mean precipitation change remains uncertain over land. Given the large interannual fluctuations of tropical precipitation, it is then suggested that the El Niño Southern Ocillation (ENSO) variability can be used as a surrogate of climate change to better constrain the model reponse. While the simulated sensitivity of global land precipitation to global mean surface temperature indeed shows a remarkable similarity between the interannual and climate change timescales respectively, the model ability to capture the ENSO-precipitation relationship is not a major constraint on the global hydrological projections. Only the model that exhibits the highest precipitation sensitivity clearly appears as an outlier. Besides deficiencies in the simulation of the ENSO-tropical rainfall teleconnections, the study indicates that uncertainties in the twenty-first century evolution of these teleconnections represent an important contribution to the model spread, thus emphasizing the need for improving the simulation of the tropical Pacific variability to provide more reliable scenarios of the global hydrological cycle. It also suggests that validating the mean present-day climate is not sufficient to assess the reliability of climate projections, and that interannual variability is another suitable and possibly more useful candidate for constraining the model response. Finally, it is shown that uncertainties in precipitation change are, like precipitation itself, very unevenly distributed over the globe, the most vulnerable countries sometimes being those where the anticipated precipitation changes are the most uncertain.  相似文献   

19.
River discharge forms a major freshwater input into the Arctic Ocean, and as such it has the potential to influence the oceanic circulation. As the hydrology of Arctic river basins is dominated by cryospheric processes such as snow accumulation and snowmelt, it may also be highly sensitive to a change in climate. Estimating the water balance of these river basins is therefore important, but it is complicated by the sparseness of observations and the large uncertainties related to the measurement of snowfalls. This study aims at simulating the water balance of the Barents Sea drainage basin in Northern Europe under present and future climate conditions. We used a regional climate model to drive a large-scale hydrological model of the area. Using simulated precipitation derived from a climate model led to an overestimation of the annual discharge in most river basins, but not in all. Under the B2 scenario of climate change, the model simulated a 25% increase in freshwater runoff, which is proportionally larger than the projected precipitation increase. As the snow season is 30–50 day shorter, the spring discharge peak is shifted by about 2–3 weeks, but the hydrological regime of the rivers remains dominated by snowmelt.  相似文献   

20.
Summary Efforts to understand and simulate the global climate in numerical models have led to regional studies of the energy and water balance. The Baltic Basin provides a continental scale test basin where meteorology, oceanography and hydrology all can meet. Using a simple conceptual approach, a large-scale hydrological model of the water balance of the total Baltic Sea Drainage Basin (HBV-Baltic) was used to simulate the basinwide water balance components for the present climate and to evaluate the land surface components of atmospheric climate models. It has been used extensively in co-operative BALTEX (The Baltic Sea Experiment) research and within SWECLIM (Swedish Regional Climate Modelling Programme) to support continued regional climate model development. This helps to identify inconsistencies in both meteorological and hydrological models. One result is that compensating errors are evident in the snow routines of the atmospheric models studied. The use of HBV-Baltic has greatly improved the dialogue between hydrological and meteorological modellers within the Baltic Basin research community. It is concluded that conceptual hydrological models, although far from being complete, play an important role in the realm of continental scale hydrological modelling. Atmospheric models benefit from the experience of hydrological modellers in developing simpler, yet more effective land surface parameterisations. This basic modelling tool for simulating the large-scale water balance of the Baltic Sea drainage basin is the only existing hydrological model that covers the entire basin and will continue to be used until more detailed models can be successfully applied at this scale. Received November 24, 2000 Revised April 4, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号