首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
洒骁  季建清  周晶 《岩石学报》2013,29(8):2789-2795
新生代以来,雷琼地区多次、大量地喷发了一系列火山岩。前人主要基于K-Ar法对此划分了期次。本文采用激光40Ar/39Ar年代学方法,对琼北火山岩区进行了精细定年研究。低本底激光40Ar/39Ar法能够对低钾含量,极少量样品(毫克级)进行精细测定,非常适合极年轻火山岩的定年工作。结果显示的火山岩激光40Ar/39Ar法高质量数据表明琼北火山喷发活动时限跨越1.3~0.052Ma。在比较了表观年龄与等时线年龄差异之后,本文给出了年龄推荐值。正如测试数据所显示,本地区新生代火山岩普遍存在40Ar和36Ar过剩的问题,此时只有等时线年龄才代表喷发的真实年龄。  相似文献   

2.
雷州半岛地区第四纪火山岩广泛分布,但对火山岩形成的时代还存在争议。文章利用高精度的激光阶段加热40Ar/39Ar法对雷州半岛中西部火山岩的年龄进行了测定,并结合与相邻地层的接触关系,划分了2个火山活动旋回。第Ⅰ旋回火山岩呈夹层产于湛江组内部,仅见于钻孔ZKC12中,岩性为橄榄拉斑玄武岩;第Ⅱ旋回火山岩在区内分布最广,覆盖在湛江组之上,40Ar/39Ar年龄为2.02~0.88 Ma,时代为早更新世早期至早更新世晚期,结合与周围地层的接触关系,进一步划分为4个喷发期。第1喷发期(Ⅱ1)规模最大,出露面积最广,形成2个喷发中心,40Ar/39Ar年龄为2.02±0.03 Ma;第2喷发期(Ⅱ2)主要分布于锅盖岭和北插一带,40Ar/39Ar年龄分别为1.77±0.03 Ma、1.70±0.03 Ma;第3喷发期(Ⅱ3)喷发中心位于火炬农场,40Ar/39Ar年龄为1.51±0.07 Ma;第4喷发期(Ⅱ4)岩性以沿裂隙喷发形成的溢流相的玄武质熔岩为主, 40Ar/39Ar年龄为0.88±0.14 Ma。火山活动明显受北东向和北西向基底断裂的控制。研究成果为雷州半岛地区火山活动时代、期次和活动规律研究提供了重要年龄证据。  相似文献   

3.
Ar同位素体系定年矿物的封闭温度范围广,并且可以获得650 ℃~150 ℃温度段的非线性冷却历史,因此 40 Ar/39 Ar热年代学成为研究地质体热演化历史过程中最有效的工具之一。但是由于矿物中Ar同位素扩散机制还有一些问题没有清楚地被认识,因此在一定程度上制约了40 Ar/39 Ar热年代学的发展。本文介绍了目前应用最广泛的两种40 Ar/39 Ar热年代学模式: 多重扩散域模式和多路径扩散模式,讨论了它们的发展现状、存在的问题、可能解决的方法以及今后的发展方向。  相似文献   

4.
张艳  孙晓猛 《岩石学报》2010,26(1):302-308
泥盆纪火山岩在辛格尔断裂以北广泛分布,且以中酸性火山岩为主。笔者在库鲁克塔格地区辛格尔断裂南侧识别出泥盆纪英安岩,40Ar/39Ar坪年龄为374.7±5.9Ma,属晚泥盆世。该火山岩样品为钙碱性系列,岩石富铝,富轻稀土(∑LREE/∑HREE=9.43),K、Rb、Sr、Ba、Th等不相容大离子亲石元素相对富集。Eu具弱负异常,Nb、Ti亏损。火山岩形成于活动大陆边缘,可能经历了大陆壳物质的混染。库鲁克塔格火山岩从时代及岩性上与辛格尔断裂北侧泥盆纪火山岩对应,说明泥盆纪火山岩不仅分布于辛格尔断裂以北地区,也见于辛格尔断裂南部。  相似文献   

5.
王银之  王非 《地质科学》2015,(4):1166-1177
长期以来, 由于金属成矿的多期性及易受后期蚀变的干扰, 成矿时代的确定成为难题, 进而成为成矿机理、矿床勘探等研究的制约因素。本文以黄铁矿和闪锌矿这两种典型的矿石矿物为例, 回顾了利用40 Ar/39 Ar法直接确定成矿时代的研究现状, 探讨了其中的问题、可能的解决方法及以后的发展前景, 为进一步开展矿石矿物的40 Ar/39 Ar年代学提供参考。同时对采自辽宁丹东青城子矿中的黄铁矿和闪锌矿样品做了包裹体镜下观察和电子探针的元素分析, 以期更好地理解矿石矿物40 Ar/39 Ar法直接定年的潜力。  相似文献   

6.
雷州半岛第四纪火山岩激光40Ar/39Ar等时线定年研究   总被引:1,自引:1,他引:1  
雷州半岛是我国新生代火山岩最重要的分布地区之一,火山活动主要集中在中晚更新世。前人对雷州火山岩的年代学研究以K-Ar法为主。研究表明,雷州火山岩测年结果大致分布在0.38~3.04Ma范围内。根据地层和火山岩层的叠置关系,雷州第四纪火山岩由于覆盖在被确定是1.87Ma和0.76Ma沉积的地层之上,故火山岩年龄应小于该地层年龄。K-Ar法定年结果与雷州地区地层叠置关系存在矛盾。本文通过对雷州半岛第四纪火山岩进行野外考察及采样,利用激光40Ar/39Ar年代学方法进行了精细定年。结果表明,雷州火山岩的喷发主要集中18万年前后。定年结果还表明,对于年轻样品,基于尼尔值计算的K-Ar年龄及40Ar/39Ar表观年龄偏老,等时线年龄相对较为可靠。对同一样品的斑晶、基质作斑晶-基质等时线计算,只有在斑晶基质满足同源条件时才有意义。本文首次提出,通过对比未照射样品的初始36Ar/38Ar值的均一性,以检验样品是否同源,确认斑晶-基质等时线年龄的可信度。据此,等时线的处理方法可以推广应用于特定区域内全部同源同时样品。  相似文献   

7.
(极)年轻火山岩激光熔蚀40Ar/39Ar定年   总被引:1,自引:2,他引:1  
对中国大量年轻或/和极年轻火山岩的定年实践研究表明,(极)年轻火山岩的激光熔蚀40Ar/39 Ar定年具有不同于第四纪以前喷发火山岩定年的显著特点.激光熔蚀40Ar/39Ar定年技术因为本底低、样品用量小以及与现代惰性气体同位素质谱设备在灵敏度、高精度方面的相一致,在年轻火山岩的定年中得到深入运用.借助激光在年轻或/和极年轻火山岩的40 Ar/39 Ar定年中,实践证明,样品形成时限越年轻(特别是相当于第四纪时期的样品),Nier值与样品中初始氩比值的偏离会引起K-Ar和40Ar/39 Ar表观年龄的偏差越大.对于小于0.2Ma的样品,Nier值与样品中初始氩比值的偏离对K-Ar和40Ar/39Ar表观年龄的偏差影响呈指数增长;当样品年龄相对较老(老于第四纪)时,Nier值和初始氩比值的偏离对K-Ar和40Ar/39 Ar表观年龄的影响较小.以40Ar/ArAr定年为出发点,定量给出界定年轻与极年轻火山岩的年龄:2~0.2Ma的火山岩界定为年轻火山岩,0.2Ma以来的火山岩称为极年轻火山岩.实验结果还证实,测定(极)年轻火山岩基质年龄时要尽量剔除非同源分馏的斑晶,以便去除斑晶可能带来的过剩氩影响;年轻火山岩样品的测年,应根据岩石结构和粒度特征选取合适的粒度,通常情况下,推荐0.2mm颗粒直径(60~80目)为理想粒径;年轻火山岩样品在快中子辐照后冷却放置时间不宜过长,否则造成37 Ar测不准,影响数据结果,带来较大偏差;激光40Ar/39Ar精细定年对标准样品的均一性有很高的要求,通过标定常用的国内外监测标样发现,标样SB-778-Bi,Bem4M,BT-1均一性很好,适合用作激光熔蚀40Ar/39Ar定年监测;测试数据的处理中,火山岩喷发后冷却结晶中同时形成的斑晶和基质的等时线处理能够帮助获得客观真实和精细的年龄结果.在此基础上,北京大学惰性气体同位素实验室建成了专用于(极)年轻火山岩精细定年的激光熔蚀40Ar/39Ar定年实验流程.  相似文献   

8.

玄武岩作为地幔岩浆的产物,其岩石地球化学特征在反映地幔组分和深部动力学作用方面有着极其重要的意义。本文对东太平洋CC区西部和魏源海山两个潜次(Dive64和Dive66)的9个玄武岩样品进行了年代学、全岩地球化学和Sr-Nd-Pb同位素研究。结果显示,Dive64与Dive66玄武岩样品39Ar/40Ar年龄分别为83.1±0.3 Ma、74.7±0.3 Ma,属于晚白垩世,主体分别为N-MORB和OIB。Dive64为亚碱性玄武岩,REE总体相对平坦,轻重稀土分馏较弱,无明显Eu负异常;Dive66玄武岩为碱性玄武岩,富集轻稀土元素,亏损重稀土元素,无明显Eu、Ce异常,MgO含量与CaO/Al2O3比值呈反比,与Cr含量、Sr含量呈略微正相关。Sr-Nd-Pb同位素表明两者的形成可能不止单一源区的贡献,Dive64玄武岩Sr-Nd-Pb同位素比值更靠近DM(亏损地幔)、HIMU(高U/Pb比值地幔)端元,Dive66玄武岩Sr-Nd-Pb同位素比值较接近EMI(I型富集地幔)、HIMU端元。综上所述,Dive64玄武岩起源于尖晶石橄榄岩区,来源于亏损的软流圈地幔(DM)并混合有HIMU组分;Dive66玄武岩起源于石榴石橄榄岩区,岩浆上升过程中主要伴随着橄榄石的结晶分异作用,单斜辉石与斜长石的结晶分异作用相对微弱,岩浆来源于HIMU组分和EMI组分,其形成可能与地幔柱有关。

  相似文献   

9.
东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究   总被引:1,自引:1,他引:1  
  相似文献   

10.
吴林  杨列坤  师文贝  王非 《地质科学》2010,45(3):905-916
Ar同位素体系定年矿物的封闭温度范围广,并且可以获得650℃~150℃温度段的非线性冷却历史,因此~(40)Ar/~(39)Ar热年代学成为研究地质体热演化历史过程中最有效的工具之一。但是由于矿物中Ar同位素扩散机制还有一些问题没有清楚地被认识,因此在一定程度上制约了~(40)Ar/~(39)Ar热年代学的发展。本文介绍了目前应用最广泛的两种~(40)Ar/~(39)Ar热年代学模式:多重扩散域模式和多路径扩散模式,讨论了它们的发展现状、存在的问题、可能解决的方法以及今后的发展方向。  相似文献   

11.

内蒙古锡林郭勒盟达里诺尔与阿巴嘎新生代大规模熔岩溢流火山作用形成数千平方千米的熔岩台地。本文利用40Ar/39Ar年代学测试技术以及ALOS-DEM数据研究熔岩台地时空分布规律。达里诺尔与阿巴嘎火山作用早期都有大规模熔岩溢流形成熔岩台地,晚期单成因火山作用形成零散分布的火山渣锥。贝力克牧场平顶山高低两级熔岩台地分别形成于~2.5Ma和~1.1Ma,阿巴嘎火山群熔岩台地形成于约6.2~7.5Ma。本文提出区域剥蚀模型解释在火山群边缘常见的多级熔岩台地的成因。火山作用与当地特殊气候引发的区域剥蚀共同作用造成多级熔岩台地地貌。

  相似文献   

12.
激光40Ar/39Ar定年方法中扣除的本底是样品测试过程中的系统冷本底。在满足激光加热样品时样品盘升温幅度有限和样品盘已完全脱气两个条件的情况下,这一处理方式的有效性才能得到保证。本文利用具有不同大气暴露史的无氧铜样品盘结合透长石标准样品YBCs,使用相同的脱气及测试流程,对比分析了不同样品盘的冷、热本底以及放置于不同样品盘时YBCs的大气氩含量。分析结果表明,放置于暴露大气14个月的样品盘内时,YBCs透长石大气氩含量高达约34.4%,使用预先激光去气的样品盘此值可降低至约2%;暴露大气约10个月的样品盘,激光加热其两个样品孔时,40Ar脱气量可达约1.6×10−14~3.1×10−14mol;暴露时长约为26个月的样品盘,40Ar含量升高至约0.8×10−13~2.0×10−13mol;它们均远高于系统冷本底3.8×10−16~6.2×10−16mol。两个样品盘热本底40Ar/36Ar值约为310,高于大气氩比值。因此,对于暴露大气时间较长的样品盘,约150℃去气四天的流程不足以使其完全脱气。激光加热样品时会导致样品盘局部升温,脱气不完全的样品盘会释放出大量热本底。模拟以及标准样品测试均显示了这种情况会影响辐照参数J值以及年龄的计算。激光微量年轻样品40Ar/39Ar定年过程中,建议装样后对无氧铜样品盘进行300~400℃至少5h的预脱气,以保证测试数据质量。实验室不具备预脱气条件时,持续使用同一样品盘也可以有效地降低异常热本底对测试结果的影响。  相似文献   

13.
由于较低的钾元素含量以及过剩氩的存在,长期以来对硅质岩的40Ar/39Ar定年一直存在较大难度。近年来,由于仪器水平的不断提高,新实验技术和方法的应用,特别是激光全熔40Ar/39Ar定年技术的应用,40Ar/39Ar定年方法具有了足够高的测试精度和稳定的低本底水平,可以满足测试极低钾元素含量的硅质岩样品的要求。利用多组矿物颗粒测试数据计算等时线年龄的方法可以很好地去除过剩氩对硅质岩年龄的影响。本文利用激光全熔40Ar/39Ar定年方法对新疆准噶尔盆地边缘的两个硅质岩样品进行了定年研究。采自白碱滩地区的08BJT-3样品的年龄测试结果为294±14Ma,该年龄结果与硅质岩样品所处的晚石炭世地层沉积年代基本一致。采自卡拉麦里地区的KML-2样品的年龄测试结果为266±14Ma,该年龄结果与强烈变形改造硅质岩样品的卡拉麦里构造变形带活动年代十分一致,表明激光全熔40Ar/39Ar定年方法可以准确地对硅质岩进行定年。  相似文献   

14.
对具有不同地质历史背景的3类40Ar/39Ar法样品中的40Ar和39Ar释出特征进行对比,研究结果表明,40Ar/39Ar法样品中的40Ar、39Ar释气曲线主要表现为以下3种形式:完全重合型、过剩氩型和不规则型。当40Ar与39Ar释气曲线呈完全重合型时,40Ar/39Ar法全熔年龄代表了岩体的形成年龄;当40Ar、39Ar释气曲线是过剩氩型时,40Ar/39Ar法全熔年龄则大于岩体的形成年龄;当40Ar与39Ar释气曲线呈不规则型时,表明样品中的放射成固氩(40Ar*)发生了丢失,其全熔年龄一般较岩体的形成年龄小。对于40Ar、39Ar释气曲线呈过剩氩型的样品,40Ar/39Ar法年龄谱通常呈马鞍形,且马鞍形年龄谱的底部年龄一般都具有地质意义,代表了岩体的形成年龄。对于40Ar、39Ar释气曲线呈不规则型的样品,对其年龄谱的解释应持谨慎态度。  相似文献   

15.
采用激光阶段加热40Ar/39Ar技术,对柴达木盆地北缘锡铁山榴辉岩退变质作用形成的榴闪岩和斜长角闪岩之角闪石进行了定年分析。09NQ44Amp来自榴闪岩,各阶段表观年龄(以现代空气氩40Ar/36Ar比值295.5扣除非放射性成因40Ar)构成了单调下降的阶梯状年龄谱。在反等时线图解上,2~4阶段数据点和5~18阶段数据点分别构成了两条等时线,等时年龄分别为427.6±10Ma和425.1±2.6Ma,对应的初始40Ar/36Ar比值则分别为435.2±6.1和705.3±13。角闪石09NQ43Amp来自榴辉岩强烈退变质作用形成的斜长角闪岩,40Ar/39Ar阶段加热分析也获得单调下降的年龄谱,在反等时线图解上其数据点3~6阶段和7~16阶段分别构成了两条等时线,等时年龄分别为418.9±2.9Ma和418.1±2.1Ma,对应的初始40Ar/36Ar比值则分别为493.7±2.8和685.8±34.3。等时线截距值高于现代大气40Ar/36Ar比值,表明角闪石中含过剩40Ar。同时,由低温和中-高温阶段加热数据点分别构成两条等时年龄基本一致,截距值却明显不同的等时线,表明在角闪石热力学性质不同的源区,存在两期明显不同且未混合的初始捕获Ar组分。等时年龄425~418Ma代表的是锡铁山榴辉岩角闪岩相退变质作用发生的时间。等时线图解法虽然有效的校正了角闪石中的过剩40Ar,但仅根据表观年龄图谱和等时线图谱还无法清晰判断过剩40Ar在角闪石中的赋存状态,有待进一步探讨。  相似文献   

16.
通过对龙江组和光华组锆石Pb/U和激光40Ar/39Ar两种方法同位素定年结果的对比研究,发现二者对于中生代火山岩的定年结果极为相近.后者相对快捷、方便、经济.认为激光40Ar/39Ar定年,适用于1:5万和1:25万区域地质调查及相关的综合研究项目工作.  相似文献   

17.
以喜马拉雅山系为典型实例,究竟是气候作用还是构造作用引起山体隆升的问题已经成为地球系统科学研究中的重要前沿问题。无论是气候因素还是构造因素引起山体隆升,二者都与一个共同的地表过程——剥蚀作用相关,剥蚀作用对山体中地质体的影响可以用岩石矿物经历的热史演化来描述,所以,在造山作用研究中,山体或山脉的热史演化是揭开地质体经历地质过程、山体隆升研究的重要途径。利用河砂组成矿物来研究流域的地质过程和构造演化已经成为现代地质科学的重要手段。本文采集了雅鲁藏布江下游墨脱县以南约50 km处地东河段内的现代河砂,对其中的角闪石、白云母、黑云母及钾长石等四种矿物进行了高精度单颗粒激光40Ar/39Ar年代学测试,并进行了概率统计。地东河段河砂中富钾矿物40Ar/39Ar年代学统计结果显示,大峡谷流域的热史演化可以确定有多个阶段,分别可以识别出70~69、61~60、43~42、35~34、26~25、25~23、22~20、20~18、17~14、12~11、8~6、5~4及<2Ma等13个热史演化阶段。通过将上述热史信息与印度大陆与欧亚大陆碰撞角度和碰撞速率变化曲线的对比,可以确定70~69、61~60、43~42、35~34、22~20和12~11Ma等6个阶段的年代学信息是两大陆碰撞角度和碰撞速率变化事件在东喜马拉雅构造结热史上的记录;通过与全球深海氧、碳同位素记录曲线的对比,可以认为26~25、25~23、17~14、8~6、5~4和<2Ma等6个阶段的年代学信息是气候变化在东喜马拉雅构造结热史上的记录。东喜马拉雅构造结地质体热史演化是构造与气候相互作用的结果。  相似文献   

18.
郑义  张莉  郭正林 《岩石学报》2013,29(1):191-204
新疆铁木尔特铅锌铜矿床位于阿尔泰造山带南缘克兰盆地内,矿体呈脉状产于康布铁堡组火山岩地层中.为准确厘定其成岩成矿时代,作者分别对矿区赋矿火山岩和含矿石英脉中的云母进行了年龄测定,获得2件火山岩样品的锆石LA-ICP-MS U-Pb年龄分别为396±5Ma和405±5Ma,2件黑云母样品的40 Ar/39 Ar坪年龄分别为240±2Ma和235±2Ma,相应的39Ar/36Ar-40Ar/36Ar等时线年龄分别为238±3Ma和233±3Ma,与坪年龄在误差范围内一致.据此,认为矿区内康布铁堡组火山岩形成于396~405 Ma,成矿作用发生于235~240Ma;成岩年龄早于成矿年龄约165Ma.因此,铁木尔特铅锌铜矿为典型的后生矿床,而不可能是同生VMS型矿床.考虑到成矿年龄稍晚于区域大规模变质作用(约250Ma),推测成矿作用与阿尔泰造山带碰撞造山作用有关.结合矿床地质特征和流体包裹体特征,认为铁木尔特铅锌铜矿为典型的陆陆碰撞体制下形成的造山型矿床.  相似文献   

19.
茜坑锂矿床是近年来新探明的大型锂矿床。锂矿主要产出于白(锂)云母花岗岩中,云母为锂矿最主要的赋存矿物。对茜坑花岗岩进行了矿床地质、地球化学和40Ar/39Ar年代学硏究。研究表明,白(锂)云母花岗岩具有富硅、富碱、强过铝质、贫镁铁、富成矿元素、高挥发分、高分异的地球化学特征,稀土总量低(ΣREE平均值为3.41×10-6),Eu具强烈负异常,稀土元素球粒陨石标准化配分曲线具有明显的M型四分组效应,属(高)分异S型花岗岩。锂云母40Ar/39Ar坪年龄为(139.09±0.56) Ma,等时线年龄为(138.45±1.11) Ma,成岩成矿时代为早白垩世,处于扬子板块与华夏板块碰撞后陆内造山挤压至伸展过渡初期。  相似文献   

20.
青藏高原东北缘的宗务隆构造带位于柴达木地块与南祁连地块之间,位置极为重要,其中发育的韧性剪切带变形特征和形成时代对于理解该构造带的构造属性具有重要的制约意义。详细的野外构造解析,显微构造解析与年代学研究表明,宗务隆剪切带发育走向NWW-SEE向糜棱面理,其上发育NWW-SEE向缓倾的拉伸线理,指示该剪切带逆冲-走滑剪切的特征。宏观尺度上可见由于剪切作用形成的不对称褶皱、旋转碎斑、构造透镜体及褶劈理等变形形迹;显微镜下可观察到云母鱼、S-C组构、σ型残斑及石英动态重结晶、拔丝构造等变形现象,指示该韧性剪切变形的温度在300~400℃。对剪切带同构造变形的白云母和黑云母进行了40Ar/39Ar同位素年代学分析,2个样品的坪年龄分别为(245.8±1.7)Ma、(238.5±2.6)Ma,指示了该剪切变形发生在早—中三叠世期间。结合对区域地质、岩石学等资料的综合分析,该期韧性剪切变形年龄代表了宗务隆构造带印支期造山作用的时间,这期造山活动可能与宗务隆有限洋盆闭合后,南祁连地块与欧龙布鲁克地块的斜向碰撞有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号