首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The marine Quaternary of Vendsyssel has been studied in a series of new boreholes in the area, and the climatic development is discussed on the basis of foraminiferal assemblages and stable isotopes. The foraminiferal zones are correlated with previously published records from northern Denmark, and the spatial local and regional distribution is discussed in details based on the new evidence. The new data show that the marine sedimentation in Vendsyssel was not continuous from the Late Saalian to the Middle Weichselian, as previously thought. For example, there is indication of a hiatus at our key site, Åsted Vest in the central part of Vendsyssel, at the transition between regional foraminiferal zones N4 and N3, i.e. at the Late Saalian (MIS 6) – Eemian (MIS 5e) transition. The hitherto most complete Early Weichselian succession (zone N2) in Vendsyssel is presented from Åsted Vest. Deposits from the Early Weichselian sea‐level lowstands (MIS 5d and 5b) may, however, be missing in parts of the area. Two major breaks in the marine deposition during the Middle Weichselian represent glacial advances into northern Denmark. The first event occurred just after deposition of the regional foraminiferal zone N2 (late MIS 4), and the second event in the middle part of zone N1 (early MIS 3). Zone N1 is succeeded by a series of non‐marine units deposited during the sea‐level lowstand of the Weichselian maximum glaciation (late MIS 3 and MIS 2), including deeply incised tunnel valleys, which have been refilled with non‐marine sediments during the Late Weichselian. Vendsyssel was inundated by the sea again during the Late Weichselian, at c. 18 kyr BP. Subsequently, the marine conditions were gradually changed by forced regression caused by local isostatic uplift, and around the Weichselian–Holocene transition most of Vendsyssel was above sea level. A continuous deposition across the Late Weichselian–Holocene boundary only occurred at relatively deep sites such as Skagen. The environmental and climatic indications for Vendsyssel are in accordance with the global sea‐level curve, and the Quaternary record is correlated with the oxygen isotope record from the NorthGRIP ice core, as well as the marine isotope stages.  相似文献   

2.
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (δ18O, δ13C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth.  相似文献   

3.
The 13C/12C ratios of Upper Holocene benthic foraminiferal tests (genera Cibicides and Uvigerina) of deep sea cores from the various world ocean basins have been compared with those of the modern total carbon dioxide (TCO2) measured during the GEOSECS program. The δ13C difference between benthic foraminifera and TCO2 is 0.07 ± 0.04‰ for Cibicides and ?0.83 ± 0.07‰ for Uvigerina at the 95% confidence level. δ13C analyses of the benthic foraminifera that lived during the last interglaciation (isotopic substage 5e, about 120,000 yr ago) show that the bulk of the TCO2 in the world ocean had a δ13C value 0.15 ± 0.12‰ lower than the modern one at the 95% confidence level, reflecting a depletion, compared to the present value, of the global organic carbon reservoir. Regional differences in δ13C between the various oceanic basins are explained by a pattern of deep water circulation different from the modern one: the Antarctic Bottom Water production was higher than today during the last interglaciation, but the eastward transport in the Circumpolar Deep Water was lower.  相似文献   

4.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

5.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

6.
苏克凡  高萌  胡哲  王娜  黄宝琦 《第四纪研究》2021,41(6):1607-1618

现代南海上层水体结构具有鲜明的季节特征,反映了季节性风场通过动力与热力过程施加的强烈影响;这种风场对上层水体结构的调控同样存在于地质历史时期,借此,长时间尺度上的东亚季风强度变化能够在南海沉积中留下记录,对相关高分辨率样品的研究继而可以从海洋的角度发掘出新的季风信息,成为对现有古季风资料的重要补充。本研究利用南海北部岩芯总长为50.8 m的MD12-3432站位(19°16.88'N,116°14.52'E;水深2125 m)高分辨率沉积样品,通过浮游有孔虫属种组合及其转换函数恢复了400 ka以来冬、夏季海水表层温度及温跃层深度,并对其进行频谱分析,同时对比现代观测资料及黄土粒度等古季风记录,讨论了海表温度、温跃层深度变化与东亚季风强度、表层环流格局等因素的关系。结果表明,晚更新世以来南海北部海表温度具有显著的100 ka冰期-间冰期旋回,冬季海表温度降幅可达8℃,是冰期冬季风增强与表层环流变化的共同结果。此外,冬季海表温度与温跃层深度重建结果均具有明显的67 ka周期,可能代表了东亚冬季风风速在南海北部的变化周期。同时,温跃层深度中未出现100 ka周期,可能指示冰期-间冰期旋回中表层环流的变化对其影响较弱,温跃层的加深主要由东亚冬季风的增强造成。

  相似文献   

7.
《Quaternary Science Reviews》2004,23(20-22):2231-2246
Palaeoclimatic changes through the last 1200 calibrated years have been documented by high-resolution multi-proxy studies of three cores from about 400 m water depth on the North Icelandic shelf. Benthic and planktonic foraminiferal assemblages and stable isotope values, as well as ice rafted debris (IRD) concentrations, are compared with diatom-based sea-surface water temperatures and the reconstructed mean temperature for the Northern Hemisphere. Changes in surface and bottom water characteristics are mainly due to variations in the strength of the relatively warm, high-salinity Irminger Current and the cold East Icelandic Current. The time period between 1200 and around 7–800 cal. (years) BP, including the Medieval Warm Period, was characterized by relatively high bottom and surface water temperatures due to the inflow of Atlantic water masses. After that, a general temperature decrease in the area marks the transition to a period with increased influence of the East Icelandic Current and, at the sea floor, the Norwegian Sea Deep Water. This corresponds to the transition to the Little Ice Age. After about 3–400 cal. BP, the inflow of cold East Icelandic Current was further enhanced. In particular, this had a strong influence on the surface waters, while the sea floor was under some influence of Atlantic water masses, resulting in stratification of the water masses. There is no clear indication of any warming in the area during the last decades.  相似文献   

8.
《Quaternary Science Reviews》2007,26(3-4):463-478
The changes in flow and character of the warm Atlantic Water through the last 17,500 cal yr are reconstructed from the distribution of benthic foraminifera species, planktonic and benthic foraminifera abundances, stable oxygen isotopes and lithology in two cores from the western and northern shelf of Svalbard. The results show almost continuous presence of Atlantic Water at the shelf areas since >14,500 cal yr BP. The Bølling and Allerød intervals stand out as periods of highest bottom waters temperatures. The strong inflow of saline, but chilled Atlantic Water during the early Holocene was followed by cooling and freshening of the bottom waters during the mid- and late Holocene. The two records reveal synchronous oceanographic changes that are closely tied to changes in the flow of Atlantic Water recorded further south in the Nordic seas. The early Holocene warming was not just an effect of higher solar insolation, but was also due to increased heat flux from the stronger Atlantic Water inflow driven by wind force and/or thermohaline circulation.  相似文献   

9.
10.
In regions with seasonal temperate climatic regimes, tree growth is rarely controlled by any single environmental factor. As a consequence, the development of robust palaeoclimate reconstructions has proved challenging. Tree‐ring stable carbon isotope ratios (δ13C), however, are controlled primarily by photosynthetic rate, not by net growth. Therefore, at sites where climatic controls on tree‐ring growth are not strongly expressed, a robust (isotopic) palaeoclimate signal may still potentially be preserved. This hypothesis was tested using a 160‐year record of δ13C measured from the pooled latewood cellulose of six Quercus petraea L. (sessile oak) trees from Allt Lan‐las in West Wales, UK. Raw δ13C values were corrected for changes in the isotopic ratio of atmospheric carbon dioxide and for changes in the behaviour of trees due to the increasing availability of atmospheric CO2 since AD 1850. Strong correlations with local summer temperature and sunshine are reported, and also with the Central England Temperature record over the full length of the isotopic chronology (AD 1850–2010) (r = 0.69, P < 0.001). We conclude that tree‐ring stable isotopes can be used to extract strong palaeoclimate signals even from oak trees growing in a temperate maritime climate. This demonstrates the potential for extracting robust palaeoclimatic information from the very long and well‐replicated oak chronologies which have been developed in western and central Europe primarily for dating rather than palaeoclimatic research purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Quantitative and semiquantitative proxy data based on more than 200 core-top samples and 100 deep-sea cores lead to important new insights about late Quaternary changes in paleo-oceanography, climate and microfaunal habitats in the north-eastern North Atlantic and Nordic Seas, insights resulting from a detailed investigation by the Kiel research project SFB 313/132 summarized in this paper. Planktonic foraminifera species provide reliable tracers of past sea surface temperatures and currents. The genus Beella in particular was found to trace subtropical water masses up to the far north. Benthic foraminifera species served as sensors of bottom currents and local flux rates of organic matter. New orders of time resolution are reached via stable isotope stratigraphy and accelerator mass spectrometry carbon-14 dating, allowing the identification of meltwater events lasting a few hundred years and shorter, a time range where, however, the yet unquantified role of bioturbation presents a growing problem. Based on this high-resolution stratigraphy a number of time slices (synoptic time intervals) are defined to reconstruct the incursion of Atlantic water masses, to map paleocurrent patterns within the Nordic Seas and the north-eastern North Atlantic and to test alternative circulation models — for example, for the last glacial maximum (LGM) and various meltwater episodes. These are clearly coeval with Dansgaard-Oeschger events found in Greenland ice cores, with the actual cause of the flickering climate as yet unknown. Likewise, there is ongoing controversy about the extent of past sea-ice cover and about possible changes from the present anti-estuarine to estuarine mode of deep water exchange between the North Atlantic and the Nordic Seas during the LGM. South of Iceland, however, the history of deep water renewal over the last glacial cycle covering the last 30000 years was largely deciphered.  相似文献   

12.
研究目的】揭示武汉北部新城地表水、地下水的氢氧稳定同位素特征及其相互作用。【研究方法】2019年,采集、测定了降水样7件、河水样6件、水库样14件、民井样98件、泉水样3件和钻孔样11件,并收集到武汉站1986—1998年的监测数据50件,以空间分析和流域分析为基础,氢氧稳定同位素分析为手段。【研究结果】(1)武汉降水氢氧同位素随季节变化,并表现出“降雨效应”明显、“温度效应”不明显的特点;(2)地表水在枯水期受到强烈的蒸散发,表现出一定的“地貌效应”与“干支流效应”的特征;(3)民井、泉和钻孔等地下水均源于大气降水,表现出“含水层埋深效应”与“山区平原效应”的特点;(4)枯水期,界河流域中界河获得了上游水库和地下水的补给,夏家寺水库流域中夏家寺水库得到了地下水补给。【结论】氢氧同位素能显著提高武汉北部新城地表水-地下水相互转换规律的认识。创新点:利用各类水体氢氧同位素组成及空间分布特征,揭示了武汉北部新城降水、地表水和地下水相互转换的规律  相似文献   

13.
14.
The purpose of this study was to trace the groundwater flow system in the Nagaoka area using subsurface temperature distribution, stable isotopes and water quality. Temperature-depth profiles were measured four times in observation wells during the period 2000–2002. Water was sampled from both observation and pumping wells during the same period. A combination of tracers was used to conceptualize the groundwater flow system. The flow system appears to be divided into shallow, intermediate and deep systems. It is clear that land use, pumping and the infiltration rate are affecting the shallow flow system.An erratum to this article can be found at  相似文献   

15.
16.
The composition of minerals from stratiform ores of the Lengshuikeng deposit, China was studied using contemporary techniques. Barite, enargite, and kutnohorite typical of postvolcanic mineralization have been identified for the first time at the studied deposit. The fluid inclusion study shows that the stratiform ore was formed at a temperature of 340?C140°C from homogeneous chloride solution with salinity of 0.2?C11.7 wt % NaCl equiv. The O and C isotopic compositions of carbonates from the stratiform ore allowed us to calculate the oxygen isotopic composition of the H2O and the carbon isotopic composition of the CO2 in the ore-forming fluid. The data on ore minerals, fluid inclusions in quartz, and stable O and C isotopes show that two or more fluids derived from different sources could have mixed during formation of the stratiform ores.  相似文献   

17.
Benthic foraminifera and stable isotopes analyses revealed changes emerging in the paleoceanographic scenery in the Paratethys. The percentage of inbenthic, oxyphylic taxa and diversity in the benthic foraminiferal assemblage showed increasing food supply (organic matter), decreasing oxygen level and growing stress on the sea floor. Oxygen isotopes measured in planktonic and benthic foraminifera pointed to strengthening stratification during the Badenian period. The carbon isotopes indicated intensified accumulation of light marine organic matter. This increasing stratification trend is especially pronounced by Late Badenian (13.5–13 Ma) when surface water oxygen isotope values are rather negative. A simple two-layer circulation model was worked out for the Badenian Paratethys explaining these characteristic environmental changes. An antiestuarine (lagoonal) circulation is assumed for the Central Paratethys during the Early (16.4–15 Ma) and mid Badenian (15–13.5 Ma). The mid Badenian period of time comprises the short episode of evaporite formation in the Carpathian Foredeep and the Transylvanian Basin. Evidence presented here supported a reversal of circulation to estuarine type after the deposition of salts by Late Badenian (13.5–13 Ma). The Early Badenian antiestuarine circulation is suggested to associate with the high temperatures of the Mid-Miocene Climatic Optimum, and the Late Badenian estuarine circulation with the cooler period following it.  相似文献   

18.
Examination of a 10 m piston core from the eastern Kattegat revealed marine sediments spanning a period from the late Middle Weichselian to the Early Holocene. The oldest marine unit in the core is 14C-dated to about 30,000–36,000 years BP. These sediments represent the Middle Weichselian Sandnes/Denekamp-Hengelo Interstadial (upper part of stable isotope stage 3) and can be correlated to marine deposits from several localities in the Kattegat region by means of foraminifera. The Late Weichselian deposits comprise sediments from the Oldest Dryas Stadial and the Allerød Interstadial. The intervening periods are not represented in the sequence (hiatuses). Sediments from the latest part of the Early Holocene Preboreal period succeeding the Allerod sequence indicate a considerable hiatus spanning 2000–3000 years around the Weichselian/Holocene boundary. The late Preboreal faunas document a high freshwater inflow during this period, and stable conditions seem not to have been reached in the area until a few hundred years later, in the Boreal period. Comparison with boxcore material from the same site documents a reduction of the energy level of the bottom currents some time between c. 8000 and 800 years BP.  相似文献   

19.
2007年中国在南海北部神狐海域通过钻探首次获得天然气水合物样品,证实了珠江口盆地深水区是水合物富集区。通过对珠江口盆地深水区构造沉降史的定量模拟研究,发现晚中新世以来区内构造沉降总体上具有由北向南、自西向东逐渐变快的演化趋势;从晚中新世到更新世,盆地深水区经历了构造沉降作用由弱到强的变化过程:晚中新世(11.6~5.3 Ma),平均构造沉降速率为67 m/Ma;上新世(5.3~1.8 Ma),平均构造沉降速率为68 m/Ma;至更新世(1.8~0 Ma),平均构造沉降速率为73 m/Ma。而造成这些变化的主因是发生在中中新世末-晚中新世末的东沙运动和发生在上新世-更新世早期的台湾运动。东沙运动(10~5 Ma)使盆地在升降过程中发生块断升降,隆起剥蚀,自东向西运动强度和构造变形逐渐减弱,使得盆地深水区持续稳定沉降;台湾运动(3 Ma)彻底改变了盆地深水区的构造格局,因重力均衡调整盆地深水区继续沉降,越往南沉降越大。将似海底反射(BSR)发育区与沉降速率平面图进行叠合分析,发现80%以上的BSR分布趋于构造沉降速率值主要在75~125 m/Ma之间、沉降速率变化迅速的隆坳接合带区域。  相似文献   

20.
A fluid inclusion and stable isotopic study has been undertaken on some massive sulphide deposits (Aguas Teñidas Este, Concepción, San Miguel, San Telmo and Cueva de la Mora) located in the northern Iberian Pyrite Belt. The isotopic analyses were mainly performed on quartz, chlorite, carbonate and whole rock samples from the stockworks and altered footwall zones of the deposits, and also on some fluid inclusion waters. Homogenization temperatures of fluid inclusions in quartz mostly range from 120 to 280 °C. Salinity of most fluid inclusions ranges from 2 to 14 wt% NaCl equiv. A few cases with T h=80–110 °C and salinity of 16–24 wt% NaCl equiv., have been also recognized. In addition, fluid inclusions from the Soloviejo Mn–Fe-jaspers (160–190 °C and ˜6 wt% NaCl equiv.) and some Late to Post-Hercynian quartz veins (130–270 °C and ˜4 wt% NaCl equiv.) were also studied. Isotopic results indicate that fluids in equilibrium with measured quartz (d 18O fluid ˜–2 to 4‰), chlorites (d 18O fluid ˜8–14‰, dD fluid ˜–45 to –27‰), whole rocks (d 18O fluid ˜4–7‰, dD fluid ˜–15 to –10‰), and carbonates (d 18O ankerite ˜14.5–16‰, d 13C fluid =–11 to –5‰) evolved isotopically during the lifetime of the hydrothermal systems, following a waxing/waning cycle at different temperatures and water/rock ratios. The results (fluid inclusions, d 18O, dD and d 13C values) point to a highly evolved seawater, along with a variable (but significant) contribution of other fluid reservoirs such as magmatic and/or deep metamorphic waters, as the most probable sources for the ore-forming fluids. These fluids interacted with the underlying volcanic and sedimentary rocks during convective circulation through the upper crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号