首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
王秀兰 《地质科学》1983,(2):188-194
氟是磷灰石的重要化学组成之一[1]。磷块岩和磷灰石中氟的测定,对磷灰石类型的鉴定和磷块岩的成因研究有重要意义。目前,氟的测定方法广泛地采用酸、碱溶(融)样,用蒸馏法进行元素分离[2,3,4]。近十几年来,由于离子选择电极法操作方便,被广泛地应用于各种类型物质中氟的测定[5]。离子交换剂可以用来分解某些难溶性的天然和合成材料,但是至今这个方法还未得到广泛地应用。  相似文献   

2.
The distributions of trace metals in the Geum Estuary of western Korea were studied with regard to changes in other estuarine chemical parameters. Dissolved oxygen, pH, and alkalinity increased with increasing salinity. Dissolved aluminum concentrations increased at low salinities and were perhaps influenced by the solubility of particulate aluminosilicate phases. Iron, managanese, cobalt, and zinc are removed from solution in the low salinity end of the estuary. Cobalt and nickel have mid-estuary concentration maxima that may be due to an anthropogenic source. Cadmium, copper, lead, and zinc concentrations also increased in the estuary, possibly as the result of remobilization in the sediments. Cadmium increases are also linked to remineralization from tidal flat sediments in the outer estuary. The source of an increase in dissolved lead at low salinity is unclear, but may be due to release from particles.  相似文献   

3.
Novel approaches to garnet analysis have been used to assess rates of intergranular diffusion between different matrix phases and garnet porphyroblasts in a regionally metamorphosed staurolite‐mica‐schist from the Barrovian‐type area in Scotland. X‐ray maps and chemical traverses of planar porphyroblast surfaces reveal chemical heterogeneity of the garnet grain boundary linked to the nature of the adjacent matrix phase. The garnet preserves evidence of low temperature retrograde exchange with matrix minerals and diffusion profiles documenting cation movement along the garnet boundaries. Garnet–quartz and garnet–plagioclase boundaries preserve evidence of sluggish Mg, Mn and Fe diffusion at comparable rates to volume diffusion in garnet, whereas diffusion along garnet–biotite interfaces is much more effective. Evidence of particularly slow Al transport, probably coupled to Fe3+ exchange, is locally preserved on garnet surfaces adjacent to Fe‐oxide phases. The Ca distribution on the garnet surface shows the most complex behaviour, with long‐wavelength heterogeneities apparently unrelated to the matrix grain boundaries. This implies that the Ca content of garnet is controlled by local availability and is thought likely to reflect disequilibrium established during garnet growth. Geochemical anomalies on the garnet surfaces are also linked to the location of triple junctions between the porphyroblasts and the matrix phases, and imply enhanced transport along these channels. The slow rates of intergranular diffusion and the characteristics of different boundary types may explain many features associated with the prograde growth of garnet porphyroblasts. Thus, minerals such as quartz, Fe‐oxides and plagioclase whose boundaries with garnet are characterized by slow intergranular diffusion rates appear to be preferentially trapped as inclusions within porphyroblasts. As such grain boundary diffusion rates may be a significant kinetic impediment to metamorphic equilibrium and garnet may struggle to maintain chemical and textural equilibrium during growth in pelites.  相似文献   

4.
Steady-state element release rates from crystalline basalt dissolution at far-from-equilibrium were measured at pH from 2 to 11 and temperatures from 5 to 75 °C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ?25 °C but slower at alkaline pH and temperatures ?50 °C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Calcium is primarily present in plagioclase, which exhibits a U-shaped dissolution rate dependence on pH. In contrast, Mg and Fe are contained in pyroxene and olivine, minerals whose dissolution rates decrease monotonically with pH. As a result, crystalline basalt preferentially releases Mg and Fe relative to Ca at acidic conditions. The injection of acidic CO2-charged fluids into crystalline basaltic terrain may, therefore, favour the formation of Mg and Fe carbonates rather than calcite. Element release rates estimated from the sum of the volume fraction normalized dissolution rates of plagioclase, pyroxene, and olivine are within one order of magnitude of those measured in this study.  相似文献   

5.
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H2O-CO2-NaCl-CaCO3-CaSO4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca2+, , , and CaSO4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results.Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.  相似文献   

6.
建立多组分平衡化学模型研究溶质在地下水中的迁移是溶液理论的基本要求,这是非确定型模型预测地下水溶质迁移中尚未解决的课题.本文利用CM(1.1)模型同时预测水中全部化学组分浓度值约束于电中性定律和最大溶度积理论,求得预测优化值,为这一问题的解决提供了范例.模型运行的结果证明,灰色系统理论不仅可用于预测水中单个离子,也可预报平衡多组分.  相似文献   

7.
The propagation of database parameter uncertainty has been assessed for aqueous and mineral equilibrium calculations of uranium by Monte Carlo and quasi-Monte Carlo simulations in simple inorganic solution compositions. The concentration output distributions of individual chemical species varies greatly depending on the solution composition modelled. The relative uncertainty for a particular species is generally reduced in regions of solution composition for which it is predicted to be dominant, due to the asymptotic behaviour imposed by the mass balance constraint where the species concentration approaches the total element concentration. The relative uncertainties of minor species, in regions where another species comprising one or several of the same components is predicted to be dominant with a high probability, also appear to be reduced slightly. Composition regions where two or several species are equally important tend to produce elevated uncertainties for related minor species, although the uncertainties of the major species themselves tend to be reduced. The non-linear behaviour of the equilibrium systems can lead to asymmetric or bimodal output distributions; this is particularly evident close to equivalence points or solubility boundaries. Relatively conservative estimates of input uncertainty can result in considerable output uncertainty due to both the complexity of uranium solution chemistry and the system interdependencies. The results of this study suggest that for some modelling scenarios, “classical” speciation calculations based on mean value estimates of the thermodynamic values may result in predictions of a relatively low probability compared to an approach that considers the effects of uncertainty propagation.  相似文献   

8.
Resistance or susceptibility of different rocks to granitization and ultra metamorphism may be related to the degree of their equilibrium and to their energetic (thermodynamic) anisotropism. All rocks may be divided accordingly into active and passive ones, depending on their behavior in granitizing environments. The active group (sedimentary, elastic, clayey, mixed, noncrystalline effusives) consists of energetically anisotropic ones as well as of rocks that failed to attain their chemical equilibrium by the time of their stabilization. Such rocks are able to release a part of their energy in a certain stage of their granitization. The passive group includes sedimentary rocks (carbonate, ferruginous), fully crystalline magmatic rocks, energetically isotropic homogeneous sandstones, and quartzites). Granitization of such rocks, is, among other things, an endothermal phenomenon. Basic and ultrabasic magmatic rocks are susceptible to granitization, provided they are interbedded with water-bearing sediments (including the passive ones); the resistance of such combinations to granitization is lower than the resistance of their constituents separately. Exothermal phenomena in granitization, such as release of energy from thermodynamically anisotropic bodies or of the accumulated solar energy (by crystalline substance) in reactions involving an uptake of liquid and gaseous phases, insufficient as they may be to assure a continuity of the granitization, may have a decisive effect upon the granitization-resistance of the rocks. — V.P. Sokoloff  相似文献   

9.
流体的热力学前缘研究   总被引:12,自引:1,他引:12  
张哲儒 《地学前缘》1996,3(3):80-88
总结了当前国内外关于流体的热力学前缘研究领域如下:(1)流体体系的p-V-T-x相关系研究,主要对象是H2O-CO2-盐类多组分体系高温高压下相图的实验和理论研究。(2)矿物在流体中的溶解度及溶解后在流体中溶解类型的形式和热力学性质——平衡常数(或Gibbs自由能)及各种偏摩尔性质的研究。(3)流体热力学模型化研究,已研制出大量的计算机软件,包括多种矿物、溶解类型的热力学数据库和模拟热液平衡、矿物溶解性质、反应路径和水—岩相互作用的实用程序。(4)超临界流体的相关系和化学反应等有许多特殊的性质,对认识地球内部的演化将有重要意义。(5)新技术新方法的发展,使分析单个矿物包裹体成分变成了现实。  相似文献   

10.
In this study we use two dimensional chemical patterns and numerical modeling to estimate the relative rates of chemical transport along interphase boundaries (ib) and through grain (s) interiors during retrograde Fe–Mg exchange between garnet and biotite at a garnet–biotite–quartz triple junction. We demonstrate that systematic variations in garnet–rim compositions, which are frequently observed along garnet–quartz interfaces, and deviations from concentric retrograde zoning patterns start to develop when chemical transport along the interphase boundaries becomes slow during cooling. The capacities for chemical transport along an interphase boundary depend on the product D ib K ib/s a, where D ib is the diffusion coefficient of the exchangeable components within the interphase boundary medium, K ib/s is the equilibrium partitioning coefficient between the cation exchange partners and the interphase boundary medium and a is the interphase boundary width. The model is applied to analyze the retrograde zoning patterns in garnets from the Mozambique belt (SE-Kenya), which cooled from 820°C at a rate of ca. 2°C/my. It is found that non-equilibrated compositions in garnet along garnet/quartz interphase boundaries started to develop below 700°C due to insufficient rates of chemical transport along these boundaries. The transport capacities of garnet/quartz interphase boundaries was estimated to have been between about 1E-23 cm3/s (575°C) and 1E-20 cm3/s (700°C) from modeling the observed X Fe pattern in garnet close to a garnet–quartz–biotite triple junction and relying on published data on the diffusivity of Fe2+ in garnet. Similar transport capacities are obtained; when the interphase boundary is assumed to be filled with a material that has the transport properties and chemical composition of a free melt in equilibrium with garnet, biotite and quartz at the respective conditions. In contrast, if the transport properties of the interphase boundary medium are related to the diffusivities and solubility of Fe2+ and FeOH+ within a free aqueous solution, chemical transport along the interphase boundaries would be much more efficient, and exchange equilibrium would have been maintained during the entire cooling history of the rocks. The observation of systematic deviations from local equilibrium along the garnet–quartz interphase boundaries leads us to exclude the presence of an aqueous fluid along the interphase boundary at any time during cooling.  相似文献   

11.
In dynamic natural systems such as soils and surface waters, transient biogeochemical processes can induce strong chemical non-steady-state conditions. In this paper, we investigate the effects of non-steady-state conditions on ligand-controlled iron oxide dissolution. The rates of goethite dissolution at pH 6 in the presence of low molecular weight organic acids (oxalate, citrate or malonate) were observed. Non-steady-state conditions were induced by rapid additions of fungal, bacterial or plant siderophores. In the presence of the low molecular weight organic acids, dissolved iron concentrations are below detection limit as predicted by equilibrium solubility calculations. The rapid addition of the siderophores triggered reproducible, fast dissolution of kinetically labile iron from the iron oxide surface. The same effect was observed upon rapid additions of high citrate concentrations to goethite-oxalate suspensions. The concentration of the labile iron pool at the mineral surface was a function of the surface concentration of the low molecular weight organic acids and of the reaction time before addition of the siderophores. Isotopic exchange with 59Fe independently confirmed the existence of the labile iron pool before addition of the siderophore. A dissolution mechanism was elucidated that is consistent with these observations and with accepted models of ligand-controlled dissolution. We conclude that the fast dissolution reaction observed here is an important process in biological iron acquisition and that it is based on a general geochemical mechanism.  相似文献   

12.
Detrital tourmaline grains and their associated tourmaline overgrowths provide a means to unravel the provenance and petrogenetic history of low grade clastic metasedimentary rocks. Evidence derives from tourmaline grains found in a lithic wacke metamorphosed to chlorite zone conditions. The detrital tourmaline cores are diagnostic indicators of the source rocks of the sediment whereas the overgrowths record both diagenetic and metamorphic reactions in the rock. Tourmaline grains consist of a detrital core surrounded by asymmetric overgrowths comprised of inner and outer rims. Abrupt chemical discontinuities between each of these zones implies that volume diffusion within tourmaline was minor under the conditions of formation. Compositions of the detrital cores vary widely, yet can be correlated with source rock types that are consistent with lithic fragments recognizable in the metawacke. At either the analogous or antilogous pole, inner rim compositions proximal to the detrital cores converge, despite the substrate tourmaline composition, indicating an approach to chemical equilibrium. However, significant dufferences in Al and X-site vacancies at the expense of Mg, Na and Ti between the analogous and antilogous poles of the inner rims demonstrate the presence of significant amounts of compositional polarity. Outer rim compositions at either pole also converge but compositional polarity between the analogous and antilogous poles persists. The presence of the inner and outer rims separated by a compositional discontinuity suggests punctuated evolution of the overgrowth. This implies that boron was sporadically available during diagenesis and metamorphism. Based on boron contents of minerals, this may correspond to a mechanism such as boron release due to polytypic change of illite or consumption of illite and/or muscovite. As such, tourmaline growth stages may serve as a monitor of chemical reactions in low grade metamorphic rocks.  相似文献   

13.
地质流体 岩石反应的地球化学动力学方法   总被引:2,自引:1,他引:2  
岑况 《现代地质》1998,12(3):367-373
摘 要  提出了一个以矿物生成和溶解的速率确定体系矿物沉淀的量来模拟水 岩反应的新方 法。新固相在体系中沉淀的量只依赖于沉淀速率‚而不是依赖于水 岩之间的平衡。考察了一 个矿物溶解生成次生矿物最终趋于平衡的溶解沉淀反应演化‚结果表明在水 岩体系中对于次 生矿物的部分平衡假定在许多情况下都不能成立。在这样的反应演化过程中亚稳矿物与溶液 之间总保持过饱和态‚矿物的沉淀速率随反应的进展而变化。同时‚当主要溶解矿物达到平 衡而溶解作用停止时‚次生矿物沉淀尚未停止‚直到体系饱和指数全部趋于0时‚才达到总 体平衡。用动力学方法处理地球化学过程中的水 岩反应比准稳平衡的简单假设更合理‚因为 动力学方法更符合自然情况‚同时产生了关于时间过程的时间尺度信息。  相似文献   

14.
Accurate identification of individual As species in contaminated environments is critical because the toxicology, mobility and adsorptive properties of this element may vary substantially with its chemical forms and oxidation states. The goal of this work was to relate the geochemical behavior of As in soils contaminated by a lead smelter in Mexico, with its chemical speciation, and to achieve direct identification of low-solubility poorly-crystalline metal arsenates. Arsenic was identified as the most mobile trace element in the wastes from the smelting plant. Arsenic solubility in soils was significantly lower than its solubility in wastes, showing natural attenuation of this element. Its solubility in soil was quantitatively described in selected samples through thermodynamic equilibrium modeling. The results indicated that As solubility is controlled by solid Pb and Cu arsenate formation. The behaviors of the sequential chemical extractions were consistent with the presence of the predicted arsenates. Microscopic evidence of the formation of solid metal arsenates were obtained in fine soil fractions of selected samples with high As contents, by using the following complementary techniques: X-ray diffraction, scanning electron microscopy and transmission electron microscopy, both coupled with energy dispersive X-ray spectroscopy, and the latter with a high angle annular dark field detector. All results supported the formation of low-solubility Pb arsenates as controlling As mobility in the samples studied, in which As(V) adsorption to Fe (hydr)oxides was not the dominant process of natural attenuation.  相似文献   

15.
Minerals that react with each other during the progressive evolution of metamorphic terranes are not always in physical contact. As such, an “intergranular fluid” could play a major role in element transfer and chemical evolution. However, the nature of this fluid and its specific role remains somewhat elusive. Recent experiments in our laboratory shed some light on the behavior of such a fluid. Here we present a simple mathematical model which accounts for diffusion within crystals and fluid, solubility in the fluid and mass balance between the various reservoirs. The model elucidates the nature of element exchange between two minerals via the mediation of an intergranular fluid. It is shown that a coupling of thermodynamics and kinetics controls the evolution of the system and the concentration of an element in the intergranular fluid is a key parameter of interest. The results have important implications for standard tools of metamorphic petrology such as geothermometers and barometers, geospeedometry and the closure of isotopic systems. For example, homogeneity of mineral grains may be a poor criterion for equilibrium and the rim compositions of minerals showing diffusion zoning may be out of equilibrium with distant exchange partners, even in the presence of a fluid in which transport is fast.  相似文献   

16.
高东东  吴勇  王春红 《地下水》2010,32(6):49-53,132
彭州地区是"5.12"地震灾区,其震后的水文地球化学特征还未有相关研究,本文利用以热力学为基础的水文地球化学平衡理论与方法对彭州通济地区震后浅层地下水化学特征及其形成进行了分析,为研究地震对浅层地下水的影响提供基础信息。分析表明:研究区水化学场受到地形地貌的控制,水化学类型以HCO3--Ca型为主;HCO3-、Ca2+普遍含量较高,CO2分压控制碳酸盐的溶解度及水中的pH值;其浅层地下水相对于石英处于过饱和状态,相对于非晶质SiO2处于未饱和状态,CO2气体参与硅酸盐矿物水解,产生可溶SiO2;矿物溶解及与水中化学组分平衡的非硅铝酸盐矿物主要为方解石,硅铝酸盐矿物主要为长石,其次是高岭石、蒙脱石。水化学平衡理论与方法可以较好的用于研究地下水所处的水文地球化学环境以及判断SiO2的来源和矿物溶解过程。  相似文献   

17.
Silicate weathering of soil-mantled slopes in an active Alpine landscape   总被引:1,自引:0,他引:1  
Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km−2 yr−1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.  相似文献   

18.
Manganese at equilibrium in seawater occurs dominantly as Mn2+ and inorganic complexes at a concentration ratio of about 1:0.72; solubility decreases exponentially with increasing pH or Eh. However, the nodule oxides birnessite and todorokite are at least four orders of magnitude undersaturated relative to the Mn concentrations of seawater, and are metastable relative to hausmannite and manganite. This apparent lack of equilibrium is explicable by the mechanism of precipitation.Surfaces assist Mn precipitation by catalyzing equilibration between dissolved and reactive O2 and simultaneously also by adsorbing ionic Mn species. The effective Eh at the surface becomes 200–400 mV above that of seawater; the oxidation rate of Mn increases about 108 ×, and the activation energies for Mn oxidation decrease ~ 11.5 kcal/mole. Consequently, marine Mn nodules and crusts form by adsorption and catalytic oxidation of Mn2+ and ferrous ions at nucleating surfaces such as sea-floor silicates, oxyhydroxides, carbonates, phosphates and biogenic debris. The resulting ferromanganese surfaces autocatalyze further growth. In addition, Mn-fixing bacteria may also significantly accelerate accretion rates on these surfaces.Mn which accumulates in submarine sediments may be diagenetically recycled in response to steep solubility gradients causing upward migration from more acidic and reducing horizons toward the sea floor. In contrast, the concentrations of the predominant ferric complexes, Fe(OH)30 and Fe(OH)4?, are relatively less sensitive to the Eh's and pH's found in this environment; Fe is therefore not as readily recycled within buried sediments. Consequently, Fe is not so effectively enriched on the sea floor, although it precipitates more readily than Mn because seawater is saturated in amorphous Fe(OH)3.The metastable, perhaps kinetically-related, Mn oxides of nodules have a characteristic distribution: birnessite predominates in oxidizing environments of low sedimentation rate and todorokite where sedimentation rates and diagenetic Mn mobility are higher. Surface adsorption and cation substitution within the disordered birnessite-todorokite structure account for the high trace element content of Mn nodules.  相似文献   

19.
The degree of polymerization of silica in aqueous solution is calculated from quartz and cristobalite solubility and the free energy of the polymorphic transition. At temperatures below 130° C, the existing solubility data are not all compatible with a simple monomeric solute model. A combination of monomeric and tetrameric silica species is shown to be compatible with most of the chemical data on silica solutions. The analysis indicates that the low temperature solubilities of quartz and/or cristobalite must be more accurately defined or that the presence of polymeric silica in solution has been overlooked.  相似文献   

20.
Stirred flow-through experiments were conducted for the first time with planktonic biogenic silica (BSi). We investigated the dissolution kinetics of uncleaned and chemically cleaned BSi collected in ocean surface water, sediment traps, and sediments from the Norwegian Sea, the Southern Ocean, and the Arabian Sea. The solubility at 2°C is rather constant (1000 to 1200 μM). The dissolution rates are, however, highly variable, declining with water depth, and phytoplankton reactivity is two to three orders of magnitude higher than pure siliceous oozes. The reactivity decrease correlates well with an increase in the integrated peak intensity ratios of Si-O-Si/Si-OH measured by Fourier transform infrared (FTIR) spectroscopy. The removal of organic or inorganic coatings enhance the reactivity by at least an order of magnitude. Atomic Al/Si ratios of 0.03 to 0.08 in sedimentary diatom frustules decrease significantly to 0.02 as a result of removal of inorganic coatings and detritals present. Near equilibrium, the dissolution rates exhibit a linear dependence on the degree of undersaturation. At higher degrees of undersaturation—that is, at low concentrations of dissolved silica—the dissolution rates of uncleaned samples define a nonlinear trend.The nonlinear kinetics imply that the dissolution of natural BSi is strongly accelerated in silica-depleted surface waters. The FTIR results suggest that internal condensation reactions reduce the amount of surface reaction sites and are partly responsible for the reactivity decrease with depth. The high content of Al in sedimentary BSi is likely caused by precipitation of dissolved silica with Al dissolved from minerals in sediment. Nonbiogenic silica as coatings or detritals are partly responsible for the solubility and reactivity decrease of BSi in sediments. One order of magnitude different rate constants measured in Norwegian Sea and Southern Ocean sediment trap material support the so-called opal paradox—that is, high BSi accumulation rates in sediments in spite of low BSi production rates in surface waters of the Southern Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号