首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Triassic–Lower Jurassic succession of the Southern Alps is characterized by rapid thickness changes, from an average of about 5000 m east of Lago Maggiore to about 500 m in the Western Southern Alps. The stratigraphy reflects the Triassic evolution of the Tethyan Gulf and the Early Jurassic rifting responsible for the Middle Jurassic break‐up of Adria from Europe. The succession of the Western Southern Alps starts with Lower Permian volcanics directly covered by Anisian sandstones. The top of the overlying Ladinian dolostones (300 m) records subaerial exposure and karstification. Locally (Gozzano), Upper Sinemurian sediments cover the Permian volcanics, documenting pre‐Sinemurian erosion. New biostratigraphic data indicate a latest Pliensbachian–Toarcian age for the Jurassic synrift deposits that unconformably cover Ladinian or Sinemurian sediments. Therefore, in the Western Southern Alps, the major rifting stage that directly evolved into the opening of the Penninic Ocean began in the latest Pliensbachian–Toarcian. New data allowed us to refine the evolution of the two previously recognized Jurassic extensional events in the Southern Alps. The youngest extensional event (Western Southern Alps) occurred as tectonic activity decreased in the Lombardy Basin. During the Sinemurian the Gozzano high represents the western shoulder of a rift basin located to the east (Lombardy). This evolution documents a transition from diffuse early rifting (Late Hettangian–Sinemurian), controlled by older discontinuities, to rifting focused along a rift valley close to the Pliensbachian–Toarcian boundary. This younger rift bridges the gap between the Hettangian–Sinemurian diffuse rifting and the Callovian–Bathonian break‐up. The late Pliensbachian–Toarcian rift, which eventually lead to continental break‐up, is interpreted as the major extensional episode in the evolution of the passive margin of Adria. The transition from diffuse to focused extension in the Southern Alps is comparable to the evolution of the Central Austroalpine during the Early Jurassic and of the Central and Northern Atlantic margins.  相似文献   

2.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

3.
The chemical composition of fine‐grained siliciclastic sediments is a powerful tool in provenance studies, either as a complement to other whole rock/single grain methods, or as a stand‐alone method when other techniques are not applicable, and particularly in those cases where the coarser sediment fractions are not available or the regional‐scale geologic framework is lost due major successive tectonic events. A comprehensive geochemical investigation of pelites from the post‐rift deposits of the Ligurian‐Piedmont ocean (sampled in tectonic units of the Alpine‐Apennine orogen: Balagne Nappe, Corsica; Tuscan Nappe and Internal Ligurian units, Northern Apennines; Err‐Platta units, Central Alps) has identified for the first time a major mafic‐ultramafic input immediately following rifting. Key trace element ratios (e.g. LaN/YbN < 10; avg. Eu/Eu* = 0.73 ± 0.06, 1SD; Th/(Cr + Ni + V) < 0.03) show that the pelitic siliciclastic layers intercalated in the Radiolarite Formation (the first post‐rift deposits) are systematically enriched in a mafic‐ultramafic source component compared with the younger post rift sediments (Calpionella Limestone and Palombini Shale). Such a peculiar chemical fingerprint is interpreted as the result of erosion and distribution across the whole basin (even to continental domains) of intraoceanic ophiolitic debris by turbidity and bottom currents sweeping the sea floor at the time of deposition of the Radiolarite Formation. Exhumed mantle and gabbroic‐basaltic rocks exposed at the morphologically articulated seafloor of the slow‐spreading Ligurian‐Piedmont ocean were available to erosion during the whole time‐span of the deposition of the Radiolarite Formation, whilst they became progressivey subordinate as a source as the basin floor was progressively covered by the siliciclastic input from the developing passive continental margins.  相似文献   

4.
晚新生代以来,青藏高原北东向扩展,致使祁连山地区遭受了强烈的构造隆升,造就了祁连山地区复杂的构造格局和急剧变化的构造地貌,其典型水系流域地貌特征揭示了该地区的新构造活动和地貌演化过程。庄浪河流域位于祁连山东段,作为青藏高原北东向扩展的前缘地区,庄浪河流域的地貌参数对构造活动非常敏感,提取庄浪河流域的地貌信息,有助于揭示祁连山东段庄浪河流域地貌对构造活动的响应,及系统探讨该区地貌发育特征及其所蕴含的构造意义。庄浪河流域内及边缘发育有庄浪河断裂、天祝盆地南缘断裂、疙瘩沟隐伏断裂以及金强河-毛毛山-老虎山断裂。晚新生代以来,这些断裂仍在活动,并且控制着流域内的构造变形、山体隆升和河流水系地貌发育。本研究采用ALOS DEM 12.5 m数据,基于ArcGIS空间分析技术,通过高程条带剖面、河流坡降指标体系(K,SL,SL/K)和Hack剖面、面积-高程积分值(HI)和积分曲线(HC)等方法,对庄浪河流域地貌特征进行了初步分析。结果表明,庄浪河地区地形起伏由北西向南东递减,构造活动存在东西分异的规律;庄浪河流域内部K值、SL、SL/K、HI值西侧高于东侧,Hack剖面西侧相比东侧上凸更明显;H...  相似文献   

5.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

6.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

7.
Rifted continental margins generally display an interior, low-relief, highly weathered upland area and a deeply incised, high-relief coastal area. The boundary between the two zones is commonly demarcated by an abrupt, seaward-facing escarpment. We investigate the rate and pattern of escarpment erosion and landscape evolution along the passive margin of south-east Australia, in the region of the New England Tableland. The process of rifting is shown to initiate an escarpment across which rivers flow, resulting in an escarpment that takes the form of dramatic, elongated gorges. Using a mass balance approach, we estimate the volume/unit length of continental material eroded seaward of the escarpment to be between 41 and 68 km2, approximately an order of magnitude less than the 339 km2 of terrigenous sediments calculated to have been deposited offshore, but consistent with earlier denudation estimates based on apatite fission track data. On the bedrock rivers draining the New England Tableland region, the escarpment is manifested as a series of sharp knickpoints punctuating the river longitudinal profiles. The knickpoints are situated the same distance upstream along the different channels and uniform escarpment retreat rates on the order of 2 km Myr−1 are estimated, despite some differences in bedrock lithologies. Gorge head migration appears to be very important as a bedrock incision mechanism. Field observations indicate a coupling between escarpment retreat and knickpoint propagation, bedrock channel incision, and hillslope development.  相似文献   

8.
As sediment accumulation indicates basin subsidence, erosion often is understood as tectonic uplift, but the amplitude and timing may be difficult to determine because the sedimentary record is missing. Quantification of erosion therefore requires indirect evidence, for example thermal indicators such as temperature, vitrinite reflectance and fission tracks in apatite. However, as always, the types and quality of data and the choice of models are important to the results. For example, considering only the thermal evolution of the sedimentary section discards the thermal time constant of the lithosphere and essentially ignores the temporal continuity of the thermal structure. Furthermore, the types and density of thermal indicators determine the solution space of deposition and erosion, the quantification of which calls for the use of inverse methods, which can only be successful when all models are mutually consistent. Here, we use integrated basin modelling and Markov Chain Monte Carlo inversion of four deep boreholes to show that the erosional pattern along the Sorgenfrei–Tornquist Zone (STZ) in the eastern North Sea is consistent with a tectonic model of tectonic inversion based on compression and relaxation of an elastic plate. Three wells in close proximity SW of the STZ have different data and exhibit characteristic differences in erosion estimates but are consistent with the formation of a thick chalk sequence, followed by minor Cenozoic erosion during relaxation inversion. The well on the inversion ridge requires ca. 1.7 km Jurassic-Early Cretaceous sedimentation followed by Late Cretaceous–Palaeocene erosion during inversion. No well demands thick Cenozoic sedimentation followed by equivalent significant Neogene exhumation. When data are of high quality and models are consistent, the thermal indicator method yields significant results with important tectonic and geodynamic implications.  相似文献   

9.
ABSTRACT Geological mapping and sedimentological investigations in the Guilin region, South China, have revealed a spindle‐ to rhomb‐shaped basin filled with Devonian shallow‐ to deep‐water carbonates. This Yangshuo Basin is interpreted as a pull‐apart basin created through secondary, synthetic strike‐slip faulting induced by major NNE–SSW‐trending, sinistral strike‐slip fault zones. These fault zones were initially reactivated along intracontinental basement faults in the course of northward migration of the South China continent. The nearly N–S‐trending margins of the Yangshuo Basin, approximately coinciding with the strike of regional fault zones, were related to the master strike‐slip faults; the NW–SE‐trending margins were related to parallel, oblique‐slip extensional faults. Nine depositional sequences recognized in Givetian through Frasnian strata can be grouped into three sequence sets (Sequences 1–2, 3–5 and 6–9), reflecting three major phases of basin evolution. During basin nucleation, most basin margins were dominated by stromatoporoid biostromes and bioherms, upon a low‐gradient shelf. Only at the steep, fault‐controlled, eastern margin were thick stromatoporoid reefs developed. The subsequent progressive offset and pull‐apart of the master strike‐slip faults during the late Givetian intensified the differential subsidence and produced a spindle‐shaped basin. The accelerated subsidence of the basin centre led to sediment starvation, reduced current circulation and increased environmental stress, leading to the extensive development of microbial buildups on platform margins and laminites in the basin centre. Stromatoporoid reefs only survived along the windward, eastern margin for a short time. The architectures of the basin margins varied from aggradation (or slightly backstepping) in windward positions (eastern and northern margins) to moderate progradation in leeward positions. A relay ramp was present in the north‐west corner between the northern oblique fault zone and the proximal part of the western master fault. In the latest Givetian (corresponding to the top of Sequence 5), a sudden subsidence of the basin induced by further offset of the strike‐slip faults was accompanied by the rapid uplift of surrounding carbonate platforms, causing considerable platform‐margin collapse, slope erosion, basin deepening and the demise of the microbialites. Afterwards, stromatoporoid reefs were only locally restored on topographic highs along the windward margin. However, a subsequent, more intense basin subsidence in the early Frasnian (top of Sequence 6), which was accompanied by a further sharp uplift of platforms, caused more profound slope erosion and platform backstepping. Poor circulation and oxygen‐depleted waters in the now much deeper basin centre led to the deposition of chert, with silica supplied by hydrothermal fluids through deep‐seated faults. Two ‘subdeeps’ were diagonally arranged in the distal parts of the master faults, and the relay ramp was destroyed. At this time, all basin margins except the western one evolved into erosional types with gullies through which granular platform sediments were transported by gravity flows to the basin. This situation persisted into the latest Frasnian. This case history shows that the carbonate platform architecture and evolution in a pull‐apart basin were not only strongly controlled by the tectonic activity, but also influenced by the oceanographic setting (i.e. windward vs. leeward) and environmental factors.  相似文献   

10.
The spatial and temporal organization of depositional environments in drainage networks of foreland basins reflect the tectonic and erosional dynamics associated with the development of mountain belts. We provide field evidences for the initiation and evolution of a complex drainage system in the French South Alpine Foreland Basin related to Western Alps exhumation. Sedimentological and structural analyses of the Eocene–Early Miocene succession were investigated in the (1) Argens/Peyresq, (2) Barrême/Blieux/Taulanne and (3) Montmaur/St‐Disdier sectors. Combined with the existing structural data set, we propose a new model that integrates the regional tectonic activity, the palaeovalley orientation and their dynamics through time. The Eocene–Miocene deposits clearly show the existence of N–S‐oriented palaeovalleys. The systematic presence of early NE–SW‐ to N–S‐oriented strike‐slip and extensional faults in the palaeovalleys suggests that these tectonic structures were responsible for the formation of the initial N–S‐oriented basin‐floor topographies. The vertical offset of the strike‐slip faults induced sufficient accommodation space for the Cenozoic sedimentation since the Middle Eocene. It implies the creation of N–S‐oriented palaeovalleys during the northward Pyrenean‐Provençal phase, pre‐dating westward Alpine compression. Later, the Oligocene Alpine tectonic phase induced drainage expansion toward the orogenic wedge and the erosion of the exhumed internal massifs by transverse streams. The establishment of new connections between the old topographic lows formed a longitudinal drainage pattern that remains the locus of deposition in a regional sedimentary routing system. In this model, former strike‐slip faults correspond to weakness zones overprinted by the westward Alpine shortening that allowed the formation of the modern piggyback basin structure of the foreland and the long‐time preservation of the palaeovalley geometry.  相似文献   

11.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

12.
We present the first comprehensive seismic‐stratigraphic analysis of Fairway Basin, which is situated on the rifted continent of Zealandia in the Tasman Sea, southwest Pacific, between Australia and New Caledonia. The basin is 700 km long, 150 km wide, and has water depths of 500–3000 m. We describe depositional architecture and paleogeographic evolution of this basin. Basin formation was concurrent with two tectonic events: (i) Cretaceous rifting during eastern Gondwana breakup and (ii) initiation and Cenozoic evolution of Tonga–Kermadec subduction system to the east of the basin. To interpret the basin history we compiled and interpreted 2D seismic‐reflection profiles and make correlations with DSDP boreholes and the geology of New Caledonia. Five seismic‐stratigraphic units were defined. The deepest and oldest unit, FW3, folded and faulted can be correlated with volcaniclastic sediments and magmatic rocks in New Caledonia that are associated with Mesozoic Gondwana margin subduction. Alternatively, given the basin location 200–300 km west of New Caledonia and inboard of the ancient plate boundary, the unit could have formed as Gondwana intra‐continental basin with no known correlative. The overlying unit FW2b records syn‐rift deposition, probably associated with Cretaceous Gondwana breakup. Subaerial erosion supplied terrigenous sediment into the deltas in the northern part of the basin, as suggested by the truncation surfaces on the basement highs and sigmoid reflector geometries within unit FW2b respectively. Above, unit FW2a records post‐rift sedimentation and passive subsidence as the Tasman Sea opened and the Fairway Basin drifted away from Australia. Subsidence led to the flooding of the basement highs and burial of wave‐cut surfaces. Eocene compressive deformation resulted in minor folding and tilting within the Fairway Basin and was associated with the formation of many diapiric structures. The top of unit FW2 is an extensive unconformity that is associated with erosion and truncation on surrounding ridges. Above this unconformity, unit FW1b is interpreted as a turbidite system sourced from topography created during the Eocene tectonic event, which we interpret as being related to Tonga–Kermadec subduction initiation. Pelagic carbonate sedimentation is now prevalent. Unit FW1a has progressively draped the basin during Oligocene to Pleistocene subsidence. Many small volcanic cones were erupted during this final phase of subsidence, either as a delayed consequence of subduction initiation, or related to Tasmantid and Lord Howe hotspot trails. The northern Fairway Ridge remains close to sea level and its reef system continues to supply carbonate detrital sediments into the basin, most likely during sea‐level lowstands. Fairway Basin contains a nearly continuous record of tectonic and paleoclimatic events in the southwest Pacific since Cretaceous time. Its paleogeographic history is a key piece in the puzzle for understanding patterns of regional biodiversity in the southwest Pacific.  相似文献   

13.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

14.
Common basin models assume that the post‐rift tectonic evolution of most basins is usually associated with tectonic quiescence. However, tectonic inversion during the post‐rift phase has been proposed for several sedimentary basins worldwide, but how and why it happens is still a matter of debate, especially in intracontinental settings where the lithosphere is old and thick. Here, we use geological and geophysical data from the Rio do Peixe Basin in NE Brazil to show evidence that intracontinental sedimentary basins can be tectonically inverted by far‐field compressive stresses acting on pre‐existing weakness zones of lithospheric‐scale where stresses can concentrate and inversion can occur. Geomorphological and field data combined with seismic reflection, gravimetric and borehole data show that: (a) inversion occurred along two main Precambrian lithospheric‐scale shear zones, the Patos (E‐W trending) and Portalegre (NE‐SW trending), which had already been reactivated as basin‐bounding faults during the earlier rift stage; (b) post‐rift reactivation affected (mostly) the original master normal faults with the largest rift displacements, and locally produced new reverse faults; (c) during contraction, deformation was partitioned between fault reactivation and buckling of the incompetent sediment pushed against the hard basement; (d) all these signs of inversion have been observed in the field and can be demonstrated on seismic reflection profiles; and (e) combined gravimetric and seismic data show that the main structures of the basin were followed by an inversion. These data are consistent with the operation of WSW‐ENE horizontal maximum compressive stress as a result of combined pushes of the Mid‐Atlantic Ridge (towards the W) and the Andes (towards the E), responsible for the post‐rift oblique inversion of normal faults inherited from the rift phase and formed with vertical maximum compressive stress.  相似文献   

15.
Interpretation of long‐offset 2D depth‐imaged seismic data suggests that outer continental margins collapse and tilt basinward rapidly as rifting yields to seafloor spreading and thermal subsidence of the margin. This collapse post‐dates rifting and stretching of the crust, but occurs roughly ten times faster than thermal subsidence of young oceanic crust, and thus is tectonic and pre‐dates the ‘drift stage’. We term this middle stage of margin development ‘outer margin collapse’, and it accords with the exhumation stage of other authors. Outer continental margins, already thinned by rifting processes, become hanging walls of crustal‐scale half grabens associated with landward‐dipping shear zones and zones of low‐shear strength magma at the base of the thinned crust. The footwalls of the shear zones comprise serpentinized sub‐continental mantle that commonly becomes exhumed from beneath the embrittled continental margin. At magma‐poor margins, outer continental margins collapse and tilt basinward to depths of about 3 km subsea at the continent–ocean transition, often deeper than the adjacent oceanic crust (accreted later between 2 and 3 km). We use the term ‘collapse’ because of the apparent rapidity of deepening (<3 Myr). Rapid salt deposition, clastic sedimentation (deltaic), or magmatism (magmatic margins) may accompany collapse, with salt thicknesses reaching 5 km and volcanic piles 1525 km. This mechanism of rapid salt deposition allows mega‐salt basins to be deposited on end‐rift unconformities at global sea level, as opposed to deep, air‐filled sub‐sea depressions. Outer marginal collapse is ‘post‐rift’ from the perspective of faulting in the continental crust, but of tectonic, not of thermal, origin. Although this appears to be a global process, the Gulf of Mexico is an excellent example because regional stratigraphic and structural relations indicate that the pre‐salt rift basin was filled to sea level by syn‐rift strata, which helps to calibrate the rate and magnitude of collapse. We examine the role of outer marginal detachments in the formation of East India, southern Brazil and the Gulf of Mexico, and how outer marginal collapse can migrate diachronously along strike, much like the onset of seafloor spreading. We suggest that backstripping estimates of lithospheric thinning (beta factor) at outer continental margins may be excessive because they probably attribute marginal collapse to thermal subsidence.  相似文献   

16.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

17.
We performed a detailed analysis of the thermal state of the Cenozoic Roer Valley Graben, the north–western branch of the European Cenozoic Rift System, based on a new set of temperature data. We developed a numerical technique for correcting bottom hole temperatures, including an evaluation of the uncertainty of thermal parameters. Comparison with drill stem test temperatures indicated that the uncertainty in corrected bottom hole temperatures using a two‐component numerical model is approximately ± 4 °C, which is much more accurate than the up to 15 °C errors encountered in often‐used line‐source or Horner correction methods. The subsurface temperatures and the derived regional heat flow estimates of 53 ± 6 to 63 ± 6 mW m?2 show no significant difference between the central rift and the adjacent structural highs. The absence of an elevated heat flow is attributed to the low amount of lithospheric thinning during the Cenozoic rifting phase (β=1.06–1.15). A local thermal anomaly exceeding +10 °C was found in five wells in the north–western part of the rift basin at depths of 1000–1500 m, and is most likely caused by the upward flow of fluids along faults, whereas lower temperatures in the upper 1500 m in the southern part of the rift basin could indicate cooling by topography‐driven groundwater flow. Conflicting ideas exist on the active or passive rifting mechanisms responsible for the formation of the different rift basins of European Cenozoic Rift System. The low spatial variation in heat flow found in this study suggests that the mechanism responsible for forming the Roer Valley Graben is passive rifting.  相似文献   

18.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

19.
The Miocene sedimentary succession of the southern Browse Basin records the response of a tropical reef system to long‐term, strong subsidence on a passive continental margin. Geological interpretation of a comprehensive two‐dimensional (2D) seismic reflectivity data set documents for the first time the development of a continuous Miocene barrier reef on the Australian North West Shelf. With a length of over 250 km, this barrier reef is among the Earth's largest in the Neogene record. A sequence stratigraphic analysis tied to well data shows that the main controls for the evolution, growth and demise of the reef system were subsidence, third‐order global‐scale eustatic variations and antecedent topography. The generally very high Miocene subsidence rates estimated for the study area cannot be explained by typical passive‐margin subsidence controlled by lithospheric cooling and sedimentary loading alone. Additional dynamic subsidence induced by mantle convection, though documented as unusually large on the northern margin of Australia during the Neogene, can be also regarded as being of only minor importance. Therefore, accelerated tectonic subsidence related to the collision of the Australian and Eurasian Plates 250–500 km north of the study area seems to exert an important influence on reef development and demise, complicated by local tectonic inversion. The Miocene tectonic reactivation and inversion of an older structural grain is interpreted to have controlled the reef development considerably by providing localized topographic highs along transpressional anticlines above basement‐rooted faults that served as preferential sites for reef growth and retreat during times of rapidly rising sea level. This exemplarily shows that the far‐field effects of collision‐induced tectonic subsidence can significantly influence carbonate systems on passive margins.  相似文献   

20.
Integration of landform and structural analysis allowed the identification of Late Pleistocene–Holocene pulses of tectonic activity in the Campos do Jordão Plateau with ages and regimes similar to the ones from the continental rift. Fault reactivation along Precambrian shear zones give rise to a series of conspicuous morphotectonic features, determine the formation of stream piracy phenomena, and divide the plateau into smaller blocks. Recognition of these tectonic pulses as well as of their effects in landform development—particularly clear on the Campos de São Francisco at the highest area of the SE edge of the plateau—show that besides the climate-related Quaternary environmental changes significant neotectonic instability should be considered in the geomorphic evolution of the Campos do Jordão Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号