首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Tyrrhena Terra region of Mars is studied with the imaging spectrometers OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité) onboard Mars Express and CRISM (Compact Reconnaissance Infrared Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, through the observation of tens of craters that impacted into this part of the martian highlands. The 175 detections of hydrated silicates are reported, mainly associated with ejecta blankets, crater walls and rims, and central up-lifts. Sizes of craters where hydrated silicates are detected are highly variable, diameters range from less than 1 km to 42 km. We report the presence of zeolites and phyllosilicates like prehnite, Mg-chlorite, Mg-rich smectites and mixed-layer chlorites–smectites and chlorite–vermiculite from comparison of hyperspectral infrared observations with laboratory spectra. These minerals are associated with fresh craters post-dating any aqueous activity. They likely represent ancient hydrated terrains excavated by the crater-forming impacts, and hence reveal the composition of the altered Noachian crust, although crater-related hydrothermal activity may have played a minor role for the largest craters (>20 km in diameter). Most detected minerals formed over relatively high temperatures (100–300 °C), likely due to aqueous alteration of the Noachian crust by regional low grade metamorphism from the Noachian thermal gradient and/or by extended hydrothermal systems associated with Noachian volcanism and ancient large impact craters. This is in contrast with some other phyllosilicate-bearing regions like Mawrth Vallis where smectites, kaolinites and hydrated silica were mainly identified, pointing to a predominance of surface/shallow sub-surface alteration; and where excavation by impacts played only a minor role. Smooth plains containing hydrated silicates are observed at the boundary between the Noachian altered crust, dissected by fluvial valleys, and the Hesperian unaltered volcanic plains. These plains may correspond to alluvial deposition of eroded material. The highlands of Tyrrhena Terra are therefore particularly well suited for investigating the diversity of hydrated minerals in ancient martian terrains.  相似文献   

2.
The study is a detailed look on one of the several fluvial systems located on the eastern rim region of the Hellas basin on Mars. We analyzed the morphologic and morphometric characteristics of an extensive channel system, which extends for over 650 km from 35.8°S, 106.4°E in Hesperia Planum to Reull Vallis at 39.5°S, 98.1°E, and has a drainage area of 35,000–40,000 km2. During its traverse the channel changes its characteristics many times, indicating variations in the surface properties. Based on cross-cutting relations, the fluvial system post-dates the emplacement of the early Hesperian lava plains in Hesperia Planum but predates the Amazonian deposits. We describe the geomorphology and evolution of the system and provide evidence of both surface flow and groundwater sapping processes. A chain of channeled paleolake basins in the central parts of the system (38°S, 102°E) provides a rough estimate for the water volume (250–300 km3) which was required to form the system. The minimum volume of surface materials eroded by the channel system is ~74 km3. Although this study presents the detailed analysis of only one fluvial system, the presence of many similar channel systems along the margin of Hellas suggests that late-stage surface runoff has played a significant role in the degradation of the rim of the basin and also in the transportation of materials towards Hellas floor.  相似文献   

3.
《Planetary and Space Science》1999,47(3-4):411-431
We have constructed the complex geologic history of the Thaumasia region of Mars on the basis of detailed geologic mapping and relative-age dating of rock units and structure. The Thaumasia plateau dominates the region and consists of high lava plains partly surrounded by rugged highlands, mostly of Noachian and Hesperian age. Long-lived faulting centered near Syria Planum and at lesser sites produced radiating narrow grabens during the Noachian through Early Amazonian and concentric wrinkle ridges during the Late Noachian and Early Hesperian. Fault activity peaked during the Noachian and waned substantially during Late Hesperian and Amazonian time. Volcanism on the Thaumasia plateau was particularly active in comparison with other martian cratered highlands, resulting in fourteen volcanoes and numerous outcrops of smooth, ridged, and lobate plains materials. A particularly extensive set of overlapping lava-flow units was emplaced sequentially from Thaumasia Planum to Syria Planum, spanning from the Late Noachian to the Late Hesperian; lobate flows succeeded smooth flow at the beginning of the Late Hesperian. Deep crustal intrusion and a thickened, buoyant crust may have caused the uplift of the plateau during the Noachian and Early Hesperian, resulting in outward-verging fold-and-thrust plateau margins. This structural style appears similar to that of the young ranges of the Rocky Mountains in the western U.S. Within the plateau, several sites of volcanotectonic activity and valley erosion may be underlain by large and perhaps long-lived magmatic intrusions. One such site occurs at the headland of Warrego Valles. Here, at least two episodes of valley dissection from the Noachian to Early Hesperian occurred during the formation of two nearby rift systems. The site also is a locus of intersection for regional narrow grabens during the Late Noachian and Early Hesperian. However, at the site, such faults diverge or terminate, which suggests that a resistant body of rock occurs there. The overall volcanotectonic history at Thaumasia fits into a model for Tharsis as a whole in which long-lived Syria Planum-centered activity is ringed by a few significant, shorter-lived centers of activity like the Thaumasia plateau. Valley formation, like tectonism in the region, peaked during the Noachian and declined substantially during the Hesperian and Amazonian. Temporal and spatial associations of single erosional valleys and valley networks with volcanoes, rift systems, and large impact craters suggest that the majority of valleys formed by hydrothermal, deformational, and seismic-induced processes. The origin of scattered, mainly Noachian valleys is more conjectural; possible explanations include local precipitation, seismic disturbance of aquifers, or unrecognized intrusions.  相似文献   

4.
We describe the results of our morphologic, stratigraphic and mineralogic investigations of fluvial landforms, paleolakes and possible shoreline morphologies at the Libya Montes/Isidis Planitia boundary. The landforms are indicative of aqueous activity and standing bodies of water, including lakes, seas and oceans, that are attributed to a complex hydrologic cycle that may have once existed on Mars in the Noachian (>3.7 Ga) and perhaps also in the Hesperian (>3.1 Ga). Our observations of the Libya Montes/Isidis Planitia boundary between 85°/86.5°E and 1.8°/5°N suggest, that (1) the termination of valley networks between roughly ?2500 and ?2800 m coincide with lake-size ponding in basins within the Libya Montes, (2) an alluvial fan and a possible delta, layered morphologies and associated Al-phyllosilicates identified within bright, polygonally fractured material at the front of the delta deposits are interpreted to be the results of fluvial activity and discharge into a paleolake, (3) the Arabia “shoreline” appears as a series of possible coastal cliffs at about ?3600 and ?3700 m indicating two distinct still stands and wave-cut action of a paleosea that temporarily filled the Isidis basin the Early Hesperian, and (4) the Deuteronilus “shoreline” appears at ?3800 m and is interpreted to be a result of the proposed sublimation residue of a frozen sea that might have filled the Isidis basin, similar to the Vastitas Borealis Formation (VBF) identified in the northern lowlands. We interpret the morphologic–geologic setting and associated mineral assemblages of the Libya Montes/Isidis Planitia boundary as results of fluvial activity, lake-size standing bodies of water and an environmental change over time toward decreasing water availability and a cold and dry climate.  相似文献   

5.
An extensive region of low, sinuous ridges occupies the Hesperian plateau above Echus Chasma in the upper Kasei Valles, Mars. The ridges have lengths of up to 270 km, heights of 100 m and widths of 10 km. The total volume of the ridge material is 6×1011 m3. In this paper, volcanic flows, depositional and erosional features are discussed using Mars Observer Laser Altimeter (MOLA), THEMIS and Mars Orbiter Camera (MOC) imagery and a chronology that places the ridge formation in the Late Hesperian is developed.The plateau is bounded to the north and west by more recent Late Hesperian and Amazonian lava flows. The plateau floor suddenly changes from being relatively smooth, to elevated, rough, hummocky terrain that extends eastwards to Echus Chasma. This rough terrain is penetrated by 2 km broad, shallow entrant channels that join with the canyons of Echus Chasma. The sinuous ridges appear to control the surface drainage associated with the entrant channels.The sinuous ridges’ size and morphology are similar to those associated with volcanic ridge eruptions. Their degraded structure is reminiscent of Moberg ridges. The rough, hummocky terrain is interpreted as glacial outwash, subsequently eroded by short-lived floods associated with ridge eruptions. The presence of both volcanic and glacial structures on the Echus Plateau raises the possibility that the ridge system arose from subglacial, volcanic events. The resulting jokulhlaups eroded the broad, entrant channels. As surface flow declined, groundwater flows dominated and canyon heads eroded back along the entrant channels, by sapping.  相似文献   

6.
We present results of our morphologic and stratigraphic investigations in the Amenthes region for which our observations suggest a complex spatial and temporal interrelation between volcanic and possibly water-related processes. We have produced a series of self-consistent geological maps and a stratigraphic correlation chart that show the spatial and temporal distribution of volcanic, fluvial and tectonic processes.The Amenthes region consists of a broad trough-like topographic depression that has served as a path for the supply of materials from Hesperia Planum to Isidis Planitia. It is most likely that Hesperia Planum and, in particular the area north of Hesperia Planum, including Tinto Vallis, Palos crater and the surrounding dissected highlands have acted as a source region for materials that were transported into the Amenthes trough and farther into the Isidis basin. The Amenthes trough, as well as the graben of Amenthes Fossae were formed after the Isidis impact in the Noachian and represent likely the oldest features in the Amenthes region. Dendritic valley networks, that bear evidence for surface runoff, have dissected the highlands adjacent to Amenthes Planum and within the Tinto Vallis and Palos crater region before ∼3.7 Ga. The ridged volcanic plains located near the Palos crater and Tinto Vallis region, within Amenthes Planum as well as within the Isidis transitional plains were formed between ∼3.5 and 3.2 Ga and represent the volcanic activity which resulted in the flooding of the Amenthes trough. The sinuous channel of Tinto Vallis was formed in the Hesperian (?3.5 Ga) and shows characteristics, which are consistent with both ground water sapping and igneous processes. The Palos crater outflow channel was formed nearly at the same time as Tinto Vallis, between ∼3.5 Ga and ∼3.2 Ga and postdates the volcanic flooding of the Amenthes trough in the Hesperian. Small valleys (∼3.4-2.8 Ga) incised into the ridged plains of Amenthes Planum appear also within the transitional plains located between the Amenthes plains and the Isidis interior plains. Our model ages show that Tinto Vallis, the Palos crater outflow channel as well as the small valleys are unlikely formed at the same time and by the same processes as the dendritic valley networks and represent an episode that clearly postdates the volcanic activity.  相似文献   

7.
Currently, and throughout much of the Amazonian, the mean annual surface temperatures of Mars are so cold that basal melting does not occur in ice sheets and glaciers and they are cold-based. The documented evidence for extensive and well-developed eskers (sediment-filled former sub-glacial meltwater channels) in the south circumpolar Dorsa Argentea Formation is an indication that basal melting and wet-based glaciation occurred at the South Pole near the Noachian–Hesperian boundary. We employ glacial accumulation and ice-flow models to distinguish between basal melting from bottom-up heat sources (elevated geothermal fluxes) and top-down induced basal melting (elevated atmospheric temperatures warming the ice). We show that under mean annual south polar atmospheric temperatures (?100 °C) simulated in typical Amazonian climate experiments and typical Noachian–Hesperian geothermal heat fluxes (45–65 mW/m2), south polar ice accumulations remain cold-based. In order to produce significant basal melting with these typical geothermal heat fluxes, the mean annual south polar atmospheric temperatures must be raised from today’s temperature at the surface (?100 °C) to the range of ?50 to ?75 °C. This mean annual polar surface atmospheric temperature range implies lower latitude mean annual temperatures that are likely to be below the melting point of water, and thus does not favor a “warm and wet” early Mars. Seasonal temperatures at lower latitudes, however, could range above the melting point of water, perhaps explaining the concurrent development of valley networks and open basin lakes in these areas. This treatment provides an independent estimate of the polar (and non-polar) surface temperatures near the Noachian–Hesperian boundary of Mars history and implies a cold and relatively dry Mars climate, similar to the Antarctic Dry Valleys, where seasonal melting forms transient streams and permanent ice-covered lakes in an otherwise hyperarid, hypothermal climate.  相似文献   

8.
We present a preliminary photogeologic map of the Scandia region of Mars with the objective of reconstructing its resurfacing history. The Scandia region includes the lower section of the regional lowland slope of Vastitas Borealis extending about 500–1800 km away from Alba Mons into the Scandia sub-basin below ?4800 m elevation. Twenty mapped geologic units express the diverse stratigraphy of the region. We particularly focus on the materials making up the Vastitas Borealis plains and its Scandia sub-region, where erosional processes have obscured stratigraphic relations and made the reconstruction of the resurfacing history particularly challenging. Geologic mapping implicates the deposition, erosion, and deformation/degradation of geologic units predominantly during Late Hesperian and Early Amazonian time (~3.6–3.3 Ga). During this time, Alba Mons was active, outflow channels were debouching sediments into the northern plains, and basal ice layers of the north polar plateau were accumulating. We identify zones of regional tectonic contraction and extension as well as gradation and mantling. Depressions and scarps within these zones indicate collapse and gradation of Scandia outcrops and surfaces at scales of meters to hundreds of meters. We find that Scandia Tholi display concentric ridges, rugged peaks, irregular depressions, and moats that suggest uplift and tilting of layered plains material by diapirs and extrusion, erosion, and deflation of viscous, sedimentary slurries as previously suggested. These appear to be long-lived features that both pre-date and post-date impact craters. Mesa-forming features may have similar origins and occur along the southern margin of the Scandia region, including near the Phoenix Mars Lander site. Distinctive lobate materials associated with local impact craters suggest impact-induced mobilization of surface materials. We suggest that the formation of the Scandia region features potentially resulted from crustal heating related to Alba Mons volcanism, which acted upon a sequence of lavas, outflow channel sediments, and polar ice deposits centered within the Scandia region. These volatile-enriched sediments may have been in a state of partial volatile melt, resulting in the mobilization of deeply buried ancient materials and their ascent and emergence as sediment and mud breccia diapirs to form tholi features. Similar subsurface instabilities proximal to Alba Mons may have led to surface disruption, as suggested by local and regional scarps, mesas, moats, and knob fields.  相似文献   

9.
A variety of sedimentary deposits is observed in Xanthe Terra, Mars, including Gilbert-type deltas, fan deltas dominated by resedimentation processes, and alluvial fans. Sediments were provided through deeply incised valleys, which were probably incised by both runoff and groundwater sapping. Mass balances based on High-Resolution Stereo Camera (HRSC) digital terrain models show that up to ~30% of the material that was eroded in the valleys is present as deltas or alluvial fan deposits. Stratigraphic relationships and crater counts indicate an age of ~4.0 to ~3.8 Ga for the fluvial activity. Hydrologic modeling indicates that the deposits were probably formed in geologically very short time scales. Our results point to episodes of a warmer and wetter climate on early Mars, followed by a long period of significantly reduced erosion rates.  相似文献   

10.
Conditions on the surface of Mars would appear to be too hostile for life as we know it. But the subsurface is another matter. If liquid water is present, even intermittently, life forms present would at least be protected from the lethal radiation bombarding the surface. However, life would have to contend with variations in pressure and possibly extended periods of desiccation. The research reported here involves both active metabolism (methanogenesis) at 400 and 50 mbar of pressure, pressures that would be found in the near subsurface of Mars, and survival following desiccation at both 1 bar (a pressure that would be found in the Martian subsurface) and 6 mbar (the lowest pressure at the surface and very near subsurface). The three methanogens tested for active metabolism, Methanothermobacter wolfeii, Methanosarcina barkeri and Methanobacterium formicicum, all demonstrated methane production at both 400 and 50 mbar on JSC Mars-1, a Mars soil simulant. Methane production at 50 mbar was much reduced compared to that at 400 mbar, most likely due to the greater stress at the lower pressure. In desiccation survival experiments, M. barkeri had survived 330 days of desiccation at 1 bar, while M. wolfeii and M. formicicum survived 180 and 120 days, respectively. Methanococcus maripaludis did not survive desiccation at all at 1 bar. At 6 mbar, M. wolfeii, M. barkeri and M. formicicum survived 120 days of desiccation while M. maripaludis survived 60 days. These results along with results from previous research would seem to indicate that there is no reason that methanogens could not inhabit the subsurface of Mars.  相似文献   

11.
We present results of our study of the rheologies and ages of lava flows in the Elysium Mons region of Mars. Previous studies have shown that the geometric dimensions of lava flows reflect rheological properties such as yield strength, effusion rate and viscosity. In this study the rheological properties of lava flows in the Elysium Mons region were determined and compared to the rheologies of the Ascraeus Mons lava flows. We also derived new crater size-frequency distribution measurements (CSFDs) for the Elysium lava flows to identify possible changes in the rheological properties with time. In addition, possible changes in the rheological properties with the distance from the caldera of Elysium Mons were analyzed.In total, 35 lava flows on and around Elysium Mons were mapped, and divided into three groups, lava flows on the flanks of Elysium Mons, in the plains between the three volcanoes Elysium Mons, Hecates and Albor Tholus and lava flows south of Albor Tholus. The rheological properties of 32 of these flows could be determined. Based on our morphometric measurements of each individual lava flow, estimates for the yield strengths, effusion rates, viscosities, and eruption duration of the studied lava flows were made. The yield strengths of the investigated lava flows range from ~3.8 × 102 Pa to ~1.5 × 104 Pa, with an average of ~3.0 × 103 Pa. These yield strengths are in good agreement with estimates for terrestrial basaltic lava flows. The effusion rates are on average ~747 m3 s?1, ranging from ~99 to 4450 m3 s?1. The viscosities are on average ~4.1 × 106 Pa s, with a range of 1.2 × 105 Pa s to 3.1 × 107 Pa s. The eruption durations of the flows were calculated to be between 6 and 183 days, with an average of ~51 days. The determined rheological properties are generally very similar to those of other volcanic regions on Mars, such as on Ascraeus Mons in the Tharsis region. Calculated yield strengths and viscosities point to a basaltic/andesitic composition of the lava flows, similar to basaltic or andesitic a’a lava flows on Earth.Absolute model ages of all 35 lava flows on Elysium Mons were derived from crater size-frequency distribution measurements (CSFD). The derived model ages show a wide variation from about 632 Ma to 3460 Ma. Crater size-frequency distribution measurements of the Elysium Mons caldera show an age of ~1640 Ma, which is consistent with the resurfacing age of Werner (2009). Significant changes of the rheologies with time could not be observed. Similarly, we did not observe systematic changes in ages with increasing distances of lava flows from the Elysium Mons caldera.  相似文献   

12.
We have mapped the area of Isidis Planitia (1–27°N, 75–103°E) in order to assess the geologic history of this region using modern data sets such as MOLA topography and the high-resolution images provided by the HRSC, CTX, and HiRISE cameras. Results of our mapping show that the geologic history of Isidis Planitia consists of three principal episodes. (1) Impact dominated episode (Noachian, until ~3.8 Ga): During this time, the oldest materials in the study area were formed mostly by impact reworking and mass-wasting. Other processes (e.g., volcanism and fluvial/glacial activity) likely operated at this time but played a subordinate role. (2) An episode related to volcanic and fluvial/glacial activities (late Noachian–early Amazonian, ~3.8–2.8 Ga): Volcanism appears as the most important process at the beginning of this episode (~3.8–3.5 Ga) and was responsible for the formation of a large circum-Isidis volcanic province by the early Hesperian epoch. Volcanic materials covered large portions of the Isidis rim, almost completely buried the previous crater record on the floor of the Isidis basin, and probably were the major contributors to the filling of the basin. Fluvial/glacial processes prevailed closer to the end of the episode (early Hesperian–early Amazonian, ~3.5–2.8 Ga) and were responsible for widespread resurfacing in the Isidis Planitia region, mostly at ~3.1–3.4 Ga. Glaciers and/or ice sheets probably resulted in a massive glaciation of the rim and the floor of the Isidis basin. The total volume of material eroded from the Isidis rim by glacial and fluvial activity is estimated to be about 35,000–50,000 km3, which is equivalent to a composite layer about 40–60 m thick on entire floor of the basin. More important, however, is that the eroded materials were likely saturated with ice/water and could form wet deposits on the floor. (3) Wind-dominated episode (since early Amazonian, ~2.8 Ga): Wind activity dominated the later geologic history of Isidis Planitia but resulted only in minor modification of the surface.  相似文献   

13.
Caleb I. Fassett 《Icarus》2008,195(1):61-89
Valley networks, concentrations of dendritic channels that often suggest widespread pluvial and fluvial activity, have been cited as indicators that the climate of Mars differed significantly in the past from the present hyperarid cold desert conditions. Some researchers suggest that the change in climate was abrupt, while others favor a much more gradual transition. Thus, the precise timing of valley network formation is critical to understanding the climate history on Mars. We examine thirty valley network-incised regions on Mars, including both cratered upland valley networks and those outside the uplands, and apply a buffered crater counting technique to directly constrain when valley network formation occurred. The crater populations that we derive using this approach allow assessment of the timing of the last activity in a valley network independent of the mapping of specific geological units. From these measurements we find that valley networks cluster into two subdivisions in terms characteristics and age: (1) valley network activity in the cratered highlands has an average cessation age at the Noachian-Hesperian boundary and all valleys that we crater counted are Early Hesperian or older. No evidence is found for valley networks in the cratered uplands of Late Hesperian or Amazonian age. The timing of the cessation of cratered upland valley network activity at the Noachian-Hesperian boundary also corresponds to a decline in the intensity of large crater formation and degradation and to the apparent end of phyllosilicate-type weathering. (2) A few valley network-incised regions formed outside of the cratered uplands on volcanic edifices, in association with younger impact craters, and on the rim of Valles Marineris. We applied our buffered crater counting technique to four such valleys, on the volcanoes Ceraunius Tholus, Hecates Tholus, and Alba Patera and on the rim of Echus Chasma, and find that each has distinctive and different Late Hesperian or Early Amazonian ages, indicating that valley networks formed from time to time in the post-Noachian period. Unlike the cratered upland valley networks, these isolated occurrences are very local and have been interpreted to represent local conditions (e.g., snowpack melted during periods of intrusive volcanic activity). In contrast to a gradual cessation in the formation of valley networks proposed by some workers, our new buffered crater counting results indicate a relatively abrupt cessation in the formation of the widespread cratered upland valley networks at approximately the end of the Noachian, followed only by episodic and very localized valley network formation in later Mars history, very likely due to specific conditions (e.g., local magmatic heating). These valley network ages and correlations are thus consistent with a major change in the near-surface aqueous environment on Mars at approximately the Noachian-Hesperian boundary. The Noachian environment supported surface running water and fluvial erosion across Mars in the cratered uplands, enhanced crater degradation, and a weathering environment favoring the formation of phyllosilicates. The Hesperian-Amazonian environment was more similar to the hyperarid cold desert of today, with valley networks forming only extremely rarely and confined to localized special conditions. Sources of water for these latter occurrences are likely to be related to periodic mobilization and equatorward migration of polar volatiles due to variations in spin-axis orbital parameters, and to periodic catastrophic emergence of groundwater.  相似文献   

14.
Most valley networks have been identified primarily in the heavily cratered uplands which are Noachian in age (>3.5 Gyr). A striking exception to this general observation is Warrego Valles located on the southeastern part of the Tharsis bulge. Recent data obtained by the Mars Orbiter Laser Altimeter, the Thermal Emission Imaging System (THEMIS) spectrometer and the Mars Orbiter Camera give new insight into the formation of valley networks and the early Mars climate. We focus our study on the southern Thaumasia region especially on Warrego Valles and determine the organisation of valleys in relation to regional topography and structural geology. Warrego Valles is the most mature valley network that incised the southern side of Thaumasia highlands. It developed in a rectangular-shaped, concave-up drainage basin. Four times more valleys are identified in THEMIS infrared images than in Viking images. Valleys exist on both sides of the main tributary contrary to what was visible in Viking images. Their distribution is highly controlled by topographic slope, e.g. there is a parallel pattern on the sides and dendritic pattern on the central part of Warrego Valles. We quantitatively analyse valley morphology and morphometry to determine the processes responsible for valley network formation. Warrego Valles displays morphometric properties similar to those of a terrestrial fluvial valley network. This valley network is characterised by seven Strahler's orders, a bifurcation ratio of 3, a length ratio of 1.7, a drainage density of 0.53 km−1 and a ruggedness number of 3.3. The hypsometric curve and integral (0.46) indicate that Warrego Valles reached the mature Davis’ stage. Valleys have undergone external degradation since their incision, which masks their main morphological characteristics. Our study supports the assertion that valley networks formed by fluvial processes controlled by an atmospheric water cycle. Further, they seem to develop by successive stages of erosion that occurred during Noachian through the late Hesperian.  相似文献   

15.
Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (High-Resolution Stereo Camera (HRSC), Thermal Emission Imaging System (THEMIS), Mars Orbiter Camera (MOC), High-Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX)), multispectral (HRSC, Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA)), topographic (Mars Orbiter Laser Altimeter (MOLA)) and gravity data, we define a new Martian volcanic province as the Circum-Hellas Volcanic Province (CHVP). With an area of >2.1 million km2, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 and 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized edifice-building eruptions. The CHVP volcanoes have two general morphologies: (1) shield-like edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and (2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of positive-relief edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7–3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of volcanoes formed from poorly consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general ‘softened’ appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the ‘softened’ appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the CHVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material eroded by various processes and exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Circum-Hellas Volcanic Province.  相似文献   

16.
The mapped area of Harmakhis Vallis, at the eastern Hellas Planitia region (35°30–42°50′S; 91°00–97°30′E), covers the surface area of about 212,000 km2. The region displays an enhanced modification of the initial topography formed by the Hellas impact. The long and complex history of degradation and alteration involves mass-wasting processes, volcanism and fluvial activity, confronting effects of climate-induced slow mass-wasting processes to effects caused by temporary, catastrophic events (impact cratering, volcanism, etc.). Geological mapping at scale of 1:1,500,000 (full scale at 1:540,000) have been carried out on multiple co-registered data sets available from the past and ongoing orbiter missions to Mars. The mapped geomorphic features of small- and medium-scales reveal in detail events that shaped the topography of the region throughout history, providing specific constraints on the geologic and climatic history of the region. This study highlights events from the most recent Martian history, including fluvial activity recorded in relation to a debris apron flanking Centauri Montes, and evidence of recent positive geothermal anomalies of a high heat-flux with relatively small spatial extents, on the timescale of several million years ago.  相似文献   

17.
The extensive light-toned deposits in canyons and troughs in Valles Marineris provide evidence of formation through water-related processes. As such, these deposits offer a window to past conditions on Mars. We study a small outcrop of light-toned deposits in a closed trough in Coprates Catena, a chain of collapse pits to the south-east of the main Valles Marineris system. A well-exposed sequence of deposits on the base of the north wall of the trough offers a 220 m section for geochemical and morphologic analysis. Using CRISM data we identify the presence of both phyllosilicates and sulfates and/or opaline silica in the light toned deposits, which vary in relative strength with elevation. We observe a trend in the dominant mineralogical signal, with Al phyllosilicates occurring near the base of the deposits, both below and above a band of Fe/Mg phyllosilicates, before a transition to more sulfate- or opaline silica-rich material near the top of the section. This trend likely reflects a change in the chemistry of the water in which the deposits formed. Using a HiRISE Digital Elevation Model, we find that the layers in the light-toned deposits on both sides of the trough dip gently towards the center of the trough, with a dip direction that aligns with the strike of the trough, suggesting that the light-toned deposits formed after the trough. Our general morphologic and mineralogical observations fit well with significant amounts of water in the trough. The deposits are too small to be dated using crater counting techniques, however, our crater analysis suggests that the plains in which the trough formed are probably Late Hesperian in age. If the chemistry of the light-toned deposits reflects the primary depositional mineralogy, then this and other small troughs in Coprates Catena might provide evidence of limited phyllosilicate formation in this region towards the end of the Hesperian era on Mars.  相似文献   

18.
Aluminous clay deposits on Mars are recognized from remotely sensed infrared spectral features similar to those of montmorillonite, beidellite, and/or kaolinite. The nature of aluminous clay deposits on Mars is of interest because they likely indicate a different formation mechanism than that of Fe–Mg clays, which are widespread on Mars and likely alteration products of the Fe–Mg-rich basaltic crust. The near-infrared reflectance spectra of aluminous martian clay deposits frequently display characteristics typical of both montmorillonite and kaolinite. The question arises whether such mixed character is due to the existence of end-member phases or to kaolinite–smectite mixed-layer (K–S). The issue is relevant because K–S implies the existence of a smectite precursor that alters into kaolinite, and thus constrains the timing and intensity of the alteration processes that generates it. A mixture of kaolinite and smectite end-members may indicate locally heterogeneous alteration processes, or alternatively, could result from the physical mixing of altered materials of different provenance. A group of natural K–S samples and synthetic kaolinite/smectite mixtures of known proportion, all of which had been thoroughly characterized in previous work using several analytical techniques, were investigated here using near-infrared (NIR) spectroscopy. The NIR spectral features correlate well with their kaolinite–smectite relative proportions. The shape of spectral features attributed to Al–OH in K–S is subtly different from those in physical mixtures of kaolinite and smectite. Based on qualitative comparison, some regions on Mars appear to have spectral signatures similar to K–S. We also applied a quantitative technique using the second derivative of spectra. In this technique, plots of the height of the features at (λ=) 2.21 μm (band present in kaolinite and montmorillonite) and 2.17 μm (kaolinite only) were able to discriminate between K–S and kaolinite–smectite physical mixtures, as they generated correlations with different slopes. The method of discrimination was applied to Mars spectra, which resulted in reasonable evidence for the existence of K–S in Nili Fossae and Mawrth Vallis, and mixtures of end-members in Mawrth Vallis and Leighton Crater. This is one of the first times that evidence for mixed-layer clay minerals, and particularly K–S, on Mars has been gathered. The ability to detect mixed-layer clays is an important step forward for further development of our understanding of the processes that generated clay on Mars.  相似文献   

19.
Ares Vallis is one of the greatest outflow channels of Mars. Using high-resolution images of recent missions to Mars (MGS, 2001 Odyssey, and Mars Express), we investigated Ares Vallis and its valley arms, taking advantage of 3-dimensional analysis performed using the high-resolution stereo capability of the Mars Express High Resolution Stereo Camera (HRSC). In our view, Ares Vallis is characterized by catastrophic flood landscapes partially superimposed by ice-related morphologies. Catastrophic flood landforms include erosional terraces, grooved terrains, streamlined uplands, giant bars, pendant bars, and cataract-like features. Ice-related morphologies include probable kame features, thermokarstic depressions, and patterned grounds. Our investigations outline that throughout the Hesperian age, Ares Vallis and its valley arms had been sculpted by several, time-scattered, catastrophic floods, originating from Iani, Hydaspis and Aram Chaos. Geomorphological evidence suggests that catastrophic floods were ice-covered, and that climatic conditions of Mars at this time were similar to those of the present day. At the end of each catastrophic flood, ice masses grounded, forming a thick stagnant dead-ice body. Each catastrophic flood was followed by a relatively brief period of warmer-wetter climatic conditions, originated as a consequence of catastrophic flooding. During such periods thermokarstic depressions originated, liquid water formed meandering channels, and ice-contact deposits were emplaced by ice-walled streams. Finally, the climate turned into cold-dry conditions similar to the present-day ones, and ice masses sublimated.  相似文献   

20.
The Hungarias are a stable asteroid group orbiting between Mars and the main asteroid belt, with high inclinations (16–30°), low eccentricities (e < 0.18), and a narrow range of semi-major axes (1.78–2.06 AU). In order to explore the significance of thermally-induced Yarkovsky drift on the population, we conducted three orbital simulations of a 1000-particle grid in Hungaria aei space. The three simulations included asteroid radii of 0.2, 1.0, and 5.0 km, respectively, with run times of 200 Myr. The results show that mean motion resonances—martian ones in particular—play a significant role in the destabilization of asteroids in the region. We conclude that either the initial Hungaria population was enormous, or, more likely, Hungarias must be replenished through collisional or dynamical means. To test the latter possibility, we conducted three more simulations of the same radii, this time in nearby Mars-crossing space. We find that certain Mars crossers can be trapped in martian resonances, and by a combination of chaotic diffusion and the Yarkovsky effect, can be stabilized by them. Therefore, some Hungarias (around 5% of non-family members with absolute magnitudes H < 15.5 and 10% for H < 17) may represent previously transient Mars crossers that have been adopted in this manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号