首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We examined large-scale climatic and small-scale biotic and abiotic factors affecting Pinus jeffreyi (Pinaceae) seedling establishment at its low-elevation boundary along the conifer forest-sagebrush steppe ecotone in eastern California, USA. In three successive growing seasons, P. jeffreyi seedlings were planted in three microhabitats (under Artemisia tridentata or Purshia tridentata canopies, and in open intershrub spaces) at a site within the ecotone (2300 m) and at a lower-elevation site (2200 m). We measured Photosynthetically Active Radiation (PAR; 400–700 nm), soil moisture and temperature, and air temperature in the three microhabitats, and monitored seedling survival, drought stress, and herbivory. At both sites, soil moisture decreased two- to six-fold between May and August of each summer. Maximum and minimum daily air temperatures were higher and lower, respectively, in intershrub areas, as were maximum daily soil temperatures and maximum daily PAR. At the ecotone site, mean P. jeffreyi seedling survival was longest following a very wet winter and shortest following a dry winter. For both elevations, seedlings had shorter survival times in intershrub microsites as compared to shrub microsites. Drought and herbivory both influenced seedling mortality within each microhabitat, but drought was the major determinant of seedling mortality by the end of each summer.  相似文献   

2.
Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulatum) that co-exist with annual food crops in Sahelian agro-ecosystems. Real-time measurements were conducted for soil water content, soil water potential and microclimate variables notably; air temperature, relative humidity, wind speed, precipitation and solar irradiance. Additionally, sap flow measurements were conducted in shrub roots using the thermal dissipation technique on intact and coppiced shrubs. Monthly predawn leaf water potential was measured using a portable pressure chamber. Soil water potential (Ψs) at the 20 cm depth declined significantly during the dry season with diel changes in Ψs of −0.6 to −1.1 MPa. These variations were attributed to passive water release from shrub roots resulting in overnight rewetting of drier upper soil layers. Sap flow measurements on tap and lateral shrub roots indicated daily reversals in the direction of flow. During the peak of the dry season, both positive (toward shrub) and negative (toward soil) flows were observed in lateral shrub roots with sap flow in the lateral roots frequently negative at night and rapidly becoming positive soon after sunrise. The negative sap flow at night in superficial lateral roots and the periodic positive flow in the descending tap roots were indicative of hydraulic redistribution. Hydraulic redistribution may be an important mechanism for drought stress avoidance while maintaining plant physiological functions in both shrubs and neighboring annuals in water-limited environments.  相似文献   

3.
Creosote bushes (Larrea tridentata) form islands of fertility that influence annual plant abundances in desert ecosystems, and the distribution of native and non-native annuals with respect to creosote may differ. We established plots on the north and south facing sides of L. tridentata in the Mojave and Sonoran Deserts within four different microhabitats spanning from under the shrub canopy into the open. We counted native and non-native annuals twice during the winter growing season to determine the effects of L. tridentata on the spatial distribution of native and non-native annuals. In both deserts, annual plant abundances were higher on the north side of L. tridentata and in open areas. Native annuals in the Mojave were most abundant near the edge of the shrub canopy, whereas native annuals in the Sonoran were most abundant in open areas. The effects of L. tridentata fertility islands on annual abundances were not consistent between the two deserts we studied. Our study emphasizes the importance of research on native and non-native annuals in multiple regions before generalizations can be made about the effects of L. tridentata on annual plant abundances in desert scrub ecosystems.  相似文献   

4.
Herbivorous tortoises in arid, winter-rainfall regions need to forage in seasons that provide relatively little heat for their ectothermic metabolism. To help understand how tortoises exploit resources in winter-rainfall areas, I recorded ambient, soil, and body temperatures for Homopus signatus in four spring seasons, and in one summer, autumn, and winter. The spring thermal environment enabled H. signatus to maintain body temperatures that were high compared to other small tortoise species. Mature females had higher spring body temperatures than males and immature individuals, probably because mature females were developing eggs. In summer, autumn, and winter, body temperatures differed between males and females, relating to sexually different activities and retreat uses. The relatively high body temperatures of H. signatus in winter and spring, along with a non-isometric relationship between body temperature and soil temperature, suggest that tortoises thermoregulated and may need considerable time to gain heat. Additional studies should compare body temperatures of H. signatus to operative temperatures, and determine the vulnerability of the taxon to human interferences that affect behavioural time budgets and body temperatures.  相似文献   

5.
The soil dilution plate method was used to examine spatiotemporal changes in microfungal communities inhabiting the playa and interdune areas in the western Negev Desert, Israel. Soil samples were collected from the 0–50 cm depth at 10 cm intervals at both habitats during the wet and dry seasons of 2010. Forty-six species belonging to 31 genera were identified, 14 and 12 species were common to both habitats during the wet and dry seasons. The colony-forming units (CFUs) ranged from 75 to 4875 and from 500 to 6925 CFU g−1 dry soil at the playa and interdune, respectively. More diverse species and higher microfungal density were recorded during the wet season compared to the dry season at both habitats, and the microfungal communities inhabiting the playa were characterized by lower species diversity and CFU compared with the interdune regardless of soil depth and sampling season. With the increase in soil depth, decreasing trends were found in both species diversity and CFU throughout the study period, especially in the playa soils. Generally, Cladosporium cladosporioides, Alternaria alternata, Ulocladium atrum, and Fusarium spp. were widespread at the playa with high relative abundance, as were Penicillium and Aspergillus spp. at both habitats.  相似文献   

6.
风蚀影响因子的敏感性试验   总被引:3,自引:0,他引:3  
 对风蚀模式的各重要影响因子进行了敏感性试验,结果表明:①随风力的增大,跃动沙粒的粒径范围迅速增大,从而会使更多、更大的尘粒因受到更强烈的撞击作用而释放于空中。但随土壤水分和植被覆盖度的增加,跃动沙粒粒径范围会变窄,较大的粒子很难被激发到空中。②各种土壤沙流通量及尘粒释放率随粒径的变化趋势Q(d)和F(d)与相应的地表土壤有效粒度分布Ps(d)具有相似的特征,说明前人用近地层沙尘粒度分布来代表地表土壤的有效粒度分布是合理的。③若以总沙流通量Q>0.5 g·m-1·s-1为风蚀过程开始发生的标准,在干燥、裸露的情况下,沙土、沙壤土、壤土、黏土和粉黏土表面发生风蚀的临界摩擦速度都约为0.3 m·s-1。相同风力条件下(u*=0.6 m·s-1),若地表干燥(w=0)并忽略小于0.1 g·m-1·s-1的总沙流通量,则抑制5种土壤发生风蚀的最小植被覆盖度分别约为:沙土0.35、沙壤土0.45、壤土0.45、黏土0.55、粉黏土0.55;若地表裸露,抑制风蚀发生的最小水分含量分别为:沙土0.15、沙壤土0.18、壤土0.3、黏土0.36和粉黏土0.33。④通常情况下沙土最不易起尘,它在各个粒径的尘粒释放率比其他土壤均约小3~5个量级。粉黏土最易起尘,且粒径较小,较容易传输到下游很远处。⑤总尘粒释放率F和总沙流通量Q随风力、地表条件的变化一般是同相的,即Q增大,F也会增大。⑥一般情况下F随摩擦速度u*的增大或植被覆盖度cf和土壤水分w的减小而增大;土壤拖曳系数sx和弹性压力垂直分量pye的增加会大大降低尘粒释放率。⑦通常风蚀情况下,5种土壤中粉黏土和沙壤土因聚合粒子破碎产生的尘粒释放率Fc最大,Fc随风力、地表条件变化的敏感度也最强;沙土的Fc最小,其对风力、地表条件的敏感度也最弱。  相似文献   

7.
Many arid basins in western North America are likely to experience future changes in precipitation timing and amount. Where shallow water tables occur, plant acquisition of groundwater and soil water may be influenced by growing season precipitation. We conducted a rainfall manipulation experiment to investigate responses of four common native plant species to ambient, increased, and decreased summer monsoon rainfall. We measured plant xylem pressure potentials (Ψ) and stable oxygen isotope signatures (δ18O) to assess effects of altered precipitation on plant water relations and water acquisition patterns. Reduced rainfall decreased Ψ more in the grasses Sporobolus airoides and Distichlis spicata than the more deeply rooted shrubs Sarcobatus vermiculatus and Ericameria nauseosa. E. nauseosa had little response to natural or experimental differences in available soil water. Plant xylem water δ18O indicated that S. airoides and D. spicata are almost entirely dependent on rain-recharged soil water, while E. nauseosa is almost entirely groundwater-dependent. Sarcobatus vermiculatus used groundwater during dry periods, but utilized precipitation from soil layers after large rainfall events. Persistent changes in precipitation patterns could cause shifts in plant community composition that may alter basin-scale groundwater consumption by native plants, affecting water availability for human and ecosystem uses.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) play important roles in ecosystem processes. However, little is known about AMF abundance in arid, nutrient-poor environments like the Mojave Desert of North America. We conducted two AMF studies: one examined AMF responses to elevated atmospheric CO2 at the Nevada Desert FACE (Free-Air-Carbon dioxide-Enrichment) Facility (NDFF), and the second examined seasonal dynamics at nearby sites. In both studies, AMF measurements (root colonization, extra-radical hyphal [ERH] length, and two measures of glomalin-related soil protein [GRSP]) and environmental factors (root length, soil water content, and precipitation) were measured across microsites (beneath shrubs, shrub interspaces) for two species (Larrea tridentata, Ambrosia dumosa). Elevated CO2 did not significantly affect AMF measurements. Other NDFF studies show no change in fine root production under elevated CO2 but show increased available nitrogen. We infer that additional fixed carbon under elevated CO2 is not allocated to soil resource foraging. However, AMF varied seasonally. ERH seasonally declined across species and microsites, but GRSP declined only beneath L. tridentata. Our results combined with previous results indicate that drought negatively affects AMF root colonization. Robust inter-relationship among AMF measurements only occurred between the two measures of GRSP, indicating that resources are independently allocated to different AMF structures.  相似文献   

9.
《Polar Science》2014,8(3):218-231
To investigate the dynamics and environmental drivers of CO2 flux through the winter snowpack in a dwarf bamboo ecosystem (Hokkaido, northeast Japan), we constructed an automated sampling system to measured CO2 concentrations at five different levels in the snowpack, from the base to the upper snow surface. Using a gas diffusion approach, we estimated an average apparent soil CO2 flux of 0.26 μmol m−2 s−1 during the snow season (December–April); temporally, the CO2 flux increased until mid-snow season, but showed no clear trend thereafter; late-season snow-melting events resulted in rapid decreases in apparent CO2 flux values. Air temperature and subnivean CO2 flux exhibited a positive linear relationship. After eliminating the effects of wind pumping, we estimated the actual soil CO2 flux (0.41 μmol m−2 s−1) to be 54% larger than the apparent flux. This study provides new constraints on snow-season carbon emissions in a dwarf bamboo ecosystem in northeast Asia.  相似文献   

10.
Qinghai spruce (Picea crassifolia) forests play an important role in regulating the regional water balance of the Qilian Mountains in northwestern China. The objective of this study was to estimate evapotranspiration (ET) of the Qinghai spruce forest in the middle section of the Qilian Mountains. A modified Penman-Monteith equation was used to simulate two sub-components of ET: canopy transpiration (Et) and soil evaporation (Es). The third sub-component of ET, canopy interception evaporation (Ei), was directly measured. The results show that the total ET of the Qinghai spruce forest was 313.6 mm during the 2008 growing season (from May 1 to September 30). Ei, Et, and Es were 100.9 mm, 160.8 mm and 51.9 mm, and accounted for 32.2%, 51.3% and 16.5% of the total ET, respectively. The total modeled ET during the 2008 growing season is acceptably consistent with the directly measured ET (298.2 mm) by eddy covariance system. The consistency implies that the modified Penman-Monteith equation is an effective method to estimate ET using conventional meteorological data with additional measurements of net radiation, and the method can thus be applied to similar situations where reliable direct measurements are not practical.  相似文献   

11.
Field active body temperatures (Tb) and operative temperatures (Te) were assessed in a population of Uromastyx aegyptia microlepis at Mahazat as-Sayd Protected Area, Saudi Arabia. In summer Tb ranged between 23.2 and 47.2 °C, in winter between 23.0 and 45.1 °C and in spring between 25.5 and 45.9 °C. There is a significant difference between respective Tb and Te distributions which suggests that U. a. microlepis is an active thermoregulator. Above ground activity is very variable between seasons, with the highest activity level in spring. In winter the animals showed an unimodal activity profile. In spring and summer the lizards exhibit bimodal activity profiles with afternoon activity being generally lower than morning activity levels. Species distribution models were calculated to estimate the future impact of global warming on this taxon. Estimates on the basis of temperature data suggest that the range size on the Arabian Peninsula might be stable but with a remarkable decrease of environmental suitability of up to 70-80%. Based on a synthesis of thermo-ecological data and species distribution models we consider climate warming as a potential threat to the survival of the species.  相似文献   

12.
Wind erodibility of major soils in the farming-pastoral ecotone of China   总被引:2,自引:0,他引:2  
Wind erosion and desertification are severe problems in China's farming-pastoral ecotone. In this study, wind erodibility of five major soils in both uncultivated and simulated cultivated conditions, were determined through wind tunnel tests at nine wind speeds ranging from 10 to 26 m s−1. The average wind erosion rate (g m−2 min−1) under the uncultivated condition (q0) for the five soils could be set in the order: chestnut soil (28.5)>brown soil (24.8)>sierozem (21.8)>chernozem (19.9)>fixed sandy soil (11.4). The highest natural wind erosion might take place in the semi-arid steppe zone where the Chestnut soils predominate. Cultivation can significantly accelerate wind erosion, the mean wind erosion rate under the cultivated condition (qc) for all five soils was 743.7 g m−2 min−1 in the following order: sandy soil (3313.2)>brown soil (227.2)>chernozem (221.8)>sierozem (85.1)>chestnut soil (81.2). For both the uncultivated and cultivated soil samples, the relationship between wind erosion rate (q) and wind speed (U) could be expressed in general as q=A eBU (A and B are constant coefficients). There was a critical wind speed for each soil type except for the sandy soil. Below the critical wind speed, cultivation reduced wind erosion rate possibly due to soil clodiness and roughness effects. Above the critical speed, cultivation greatly intensified wind erosion rates due to the break down of the original soil structure. The critical wind speed measured at 20 cm above the soil surface was 20 m s−1 for the brown soil, 14 m s−1 for chernozem and the chestnut soils, and 10 m s−1 for the sierozem. Among the five tested soils, the high wind erosion rate of the cultivated sandy soil showed its extreme sensitivity to cultivation, possibly because of the structureless nature of the loose sand. The “effect of cultivation on wind erosion” index, η (=qc/q0), increased exponentially with the increase of wind speed, indicating that under higher wind speed conditions, cultivation could result in more severe wind erosion.  相似文献   

13.
In arid environments, soil fertility exhibits a high degree of spatial and temporal heterogeneity, which results from high climatic variability seasonally and heterogeneous plant distribution. However, because most desert areas have been altered by human activities, heterogeneous fertility would originate from grazing or logging activities. We evaluated spatial and temporal heterogeneity of soil fertility in cattle-excluded sites under and outside woody plant cover (Prosopis flexuosa and Larrea divaricata), and in sites disturbed by tree removal during wet and dry season in Ñacuñán Biosphere Reserve (Central Monte desert of Argentina). Soil organic matter, fulvic acids, bioavailable organic matter, and nitrate were lower outside plant canopy (8.9 mg g?1, 0.03 mg g?1, 8.2 mg g?1, and 4.17 mg kg?1, respectively). Total N, humic acids, and abundance of microbial functional groups did not show differences among sites. Most parameters differed between seasons, tending to be higher in the wet season. Overall soils of Ñacuñán Reserve are characterized by: a) more homogenous spatial pattern than expected from woody plant presence; b) very heterogeneous temporal pattern; and c) after two years, tree removal does not seem to induce infertile soil formation.  相似文献   

14.
Decomposition of soil organic carbon (SOC) regulates the partitioning between soil C-stock and release of CO2 to the atmosphere and is vital for soil fertility. Agricultural expansion followed by decreasing amounts of SOC and soil fertility is a problem mainly seen in tropical agro-ecosystems where fertilizers are in short supply. This paper focuses on factors influencing temporal trends in soil respiration measured as CO2 effluxes in grass savanna compared with groundnut (Arachis hypogaea L.) fields in the semi-arid part of Senegal in West Africa. Based on laboratory experiments, soil CO2 production has been expressed as a function of temperature and soil water content by fit equations. Field measurements included soil CO2 effluxes, soil temperatures and water contents. Effluxes in grass savanna and groundnut fields during the dry season were negligible, while effluxes during the rainy season were about 3–8 μmol CO2 m?2 s?1, decreasing to less than 1 μmol by the end of the growing season. Annual soil CO2 production was simulated to be in the range of 31–38 mol C m?2. Furthermore, a controlled water addition experiment revealed the importance of rain during the dry season for the overall turnover of soil organic matter.  相似文献   

15.
Of all terrestrial ecosystems, the productivity of deserts has been suggested to be the most responsive to increasing atmospheric CO2. The extent to which this prediction holds will depend in part on plant responses to elevated CO2under the highly variable conditions characteristic of arid regions. The photosynthetic responses ofLarrea tridentata , an evergreen shrub, to a step-increase in atmospheric CO2(to 550 μmolmol−1) were examined in the field using Free-Air CO2Enrichment (FACE) under seasonally varying moisture conditions. Elevated CO2substantially increased net assimilation rate (Anet) in Larrea during both moist and dry periods of the potential growing season, while stomatal conductance (gs) did not differ between elevated and ambient CO2treatments. Seasonal and diurnal gas exchange dynamics in elevated CO2mirrored patterns in ambient CO2, indicating that elevated CO2did not extend photosynthetic activity longer into the dry season or during more stressful times of the day. Net assimilation vs. internal CO2(A/Ci) responses showed no evidence of photosynthetic down-regulation during the dry season. In contrast, after significant autumn rains, Amax(the CO2saturated rate of photosynthesis) and CE (carboxylation efficiency) were lower in Larrea under elevated CO2. In situ chlorophyll fluorescence estimation ofLarrea Photosystem II efficiency (Fv/Fm) responded more to water limitation than to elevated CO2. These findings suggest that predictions regarding desert plant responses to elevated CO2should account for seasonal patterns of photosynthetic regulatory responses, which may vary across species and plant functional types.  相似文献   

16.
Over the past century, the invasive halophytic shrub Tamarix ramosissima Ledeb. has increased in abundance and distribution in riparian ecosystems of western North America. These increases coincide with anthropogenic modification of river systems, which decrease the rate of periodic overbank flooding, leading to an increase in soil salinity. Increased soil salinity negatively impacts the physiology of native riparian tree species, but the impact of increased soil salinity on T. ramosissima physiology is incompletely known. To measure the impacts of soil salinity on T. ramosissima, we measured leaf-level responses across a broad range of surface-soil salinity concentrations at two sites in western Kansas. Photosynthesis at 2000 μmol m−2 s−1 (A2000), stomatal conductance to water (gs), intercellular CO2 concentration (Ci), and leaf δ13C showed little change over surface-soil salinities from 0.5 to 17.65 mmhos/cm. The small variation in leaf-level physiological responses suggests robust functioning of T. ramosissima across a broad range of surface-soil salinities. Leaf-level physiology and δ13C responses were assessed by canopy position, but responses were not significantly different. These results are among the first to show broad acclimation and robust physiological functioning for many leaf-level processes measured on mature trees grown across a wide surface-soil salinity gradient in the field.  相似文献   

17.
Responses of photosynthesis (Pn), stomatal conductance (gs), pre-dawn leaf water potential (Ψlp) and leaf water content (ωl) of creosote bush to 10 rainfall events in the Chihuahuan Desert were investigated. Infiltration of rainwater was manipulated by applying municipal biosolids. The responses of Pnand water relation parameters to rainfall (>10 mm) were mainly dependent upon drought severity: (1) following a moderate drought, Pn, gs, Ψlpand ωlrecovered to corresponding values of irrigated plants within 2 days after a 23-mm rainfall; (2) Ψlpand gsresponded to a 15-mm rainfall within 2 days, following a 25-day drought, whereas responses of Pnand ωlwere delayed for several days; (3) responses of Pn, gs, Ψlpand ωlto a 14·7-mm rainfall were all delayed for several weeks following a 110-day drought, but the delay was longer in Pn, gsand ωlthan in Ψlp. Creosote bush responded to small rainfall events (approximately 6 to 8 mm) with an increase in Ψlp, but without noticeable changes in gsand Pn, suggesting a strong stomatal control of water loss even though xylem embolism was reduced. Biosolids applied at high rates (3·4 and 9 kgm−2) decreased the soil water by 2 to 4 mm following rainfall events, and this in turn delayed and decreased the responses of Pnand water relation parameters to rainfall.Pnand gswere linearly related to ωland exponentially related to Ψlp. With the generally coincidental responses of Pnor gsand ωlto rainfall, we concluded that the responses of Pnand gsto rainfall were dependent on leaf rehydration which resulted from restored hydraulic conductance following drought.  相似文献   

18.
This research examines changes to seasonal start dates (1948–2015) across urban locations in the eastern United States. For 25 cities, percentile-specific thresholds of temperature (Ta) and apparent temperature (AT) were used to define seasonal start dates. Seasonal changes were evaluated across four time periods: 0300, 0900, 1500, and 2100 UTC. Incorporating spatial and temporal variability into seasonal delineation, this research critiques the ways in which seasons are defined and builds on existing research regarding seasonal climate change. Both Ta and AT results generally indicate earlier starts to the summer and spring seasons, while the starts to winter and autumn seasons have been delayed. On average, a forward shift of 11 days was found for summer. Larger changes were found for AT thresholds when compared to air temperature alone. Temporally, the largest and most significant changes were found for the 0300 and 2100 observations. The observed changes to seasons have significant impact on a range of processes, including phenology and human health, and may be appropriate to consider further in future climatology studies.  相似文献   

19.
A perennial forage grass, Agropyron desertorum was sown under the canopies of four shrub species or in open areas to test for facilitation during seedling establishment in an arid rangeland in Karnakh, Northeast Iran. Height, area and volume of shrubs were measured. Microclimate conditions and seedling establishment were assessed three times within two consecutive growing seasons. Near surface light intensity and air temperature were lower under shrubs, which led to initially higher soil moisture and grass establishment under the canopy of some shrub species. The leguminous shrub (Astragalus gossypinus) showed facilitation during moderate stress (summer 2009), but shifted to a negative effect during the severe drought (summer 2010). Competition, possibly for light, reduced the establishment of Agropyron seedlings under the cushion-like shrub (Acantholimon prostegium). Salsola arbusculiformis and Artemisia kopetdaghensis respectively showed a neutral and a facilitation effect in the first season, but a combined effect of allelopathy and drought led to the high mortality of Agropyron seedlings under their canopy. In conclusion in this arid rangeland, shrubs may facilitate establishment of understory plants under moderate drought stress, and for non-resource factors (light and temperature), but these positive effects are suppressed due to competition under severe drought conditions.  相似文献   

20.
Soil texture greatly influences soil water movement, thus may affect the water balance and vegetation growth in the desert–Loess Plateau transition zone. This study is to determine if the water balance differs in homogeneous and layered soils with Caragana korshinkii stands in semiarid region. Soil water measurements up to 500-cm depth were taken in 2006 and 2007 on homogeneous sandy soil, homogeneous silt loam soil, and layered soil with sand overlying silt loam. HYDRUS-1D was used to simulate the soil water balance. The results indicated the annual water balance components were greatly affected by soil layering. The ratio of average actual evapotranspiration (ETa) to precipitation (P) during the two years in the layered soil was slightly lower than that in homogeneous soils. The ratios of annual actual transpiration (Tr) to evapotranspiration were 50.9%, 41.2% and 30.6% in layered soil, homogeneous sandy soil, and homogeneous silt loam soil, respectively. C. korshinkii grown in layered soil had deeper soil water recharge and higher Tr/ETa ratio, thus had more available water for transpiration than that in homogeneous soils. This study suggested the layered soil with sand overlying silt loam is more favorable to C. korshinkii growth in terms of water use than homogeneous soils in the desert–Loess Plateau transition zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号