首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use data from the VIMS instrument on board the Cassini spacecraft to construct high sensitivity and high spatial-resolution maps of the locations of tropospheric clouds on Titan in the late northern winter season during which the Cassini prime mission took place. These observations show that, in this season, clouds on Titan are strongly hemispherically asymmetric. Mid-latitude clouds, in particular, occur only in the southern hemisphere and have not ever been observed in the north. Such an asymmetry is in general agreement with circulation models where sub-solar surface heating controls the locations of clouds and appears in conflict with models where perennial polar hazes prevent significant summertime polar heating from affecting the circulation. The southern mid-latitude clouds appear to be distributed uniformly in longitude, in contrast to some previous observations. Southern high-latitude clouds exhibit a significant concentration, however, between about 180° and 270°E longitude. A spatially and temporally uniform cloud always appears northward of ∼50°N latitude. This cloud appears unchanged over the course of the observations, consistent with the interpretation that it is caused by continuous ethane condensation as air subsides and radiatively cools through the tropopause. The location of this cloud likely provides a direct tracer of elements of north polar atmospheric circulation, potentially allowing continuous monitoring of circulation changes as Titan passes through equinox into north polar spring and summer. We show that a similar analysis of this dataset by Rodriguez et al. (2009) contains substantial errors and should not be used.  相似文献   

2.
We used MGS-MOC and MRO-MARCI daily mapping images of the North Polar Region of Mars from 16 August 2005 (Ls = 270°) to 21 May 2009 (Ls = 270°), covering portions of three consecutive martian years (MY 27-MY 29), to observe the seasonal behavior of the polar ice cap and atmospheric phenomena. The rate of cap regression was similar in MY 28 and MY 29, but was advanced by 3.5° of Ls (∼7-8 sols) in MY 29. The spatial and temporal behaviors of dust and condensate clouds were similar in the two years and generally in accord with prior years. Dust storms (>100 km2) were observed in all seasons, with peak activity occurring at Ls = 10-20° from 50°N to 70°N and at Ls = 135-140° from 70°N to 90°N. The most active quadrant was 0-90°W in MY 28, shifting to 180-270°W in MY 29. The majority of regional storms in both years developed in longitudes from 10°W to 60°W. During late summer the larger storms obscure the North Polar Region in a cloud of dust that transitions to north polar hood condensate clouds around autumnal equinox.Changes in the distribution of perennial ice deposits, especially in Olympia Planum, were observed between the 2 years, with the MY 29 ice distribution being the most extensive observed to date. Modeling suggests that the small, bright ice patches on the residual cap are not the result of slope or elevation effects. Rather we suggest that they are the result of local meteorological effects on ice deposition. The annual darkening and brightening of peripheral areas of the residual cap around summer solstice can be explained by the sublimation of a brighter frost layer revealing an underlying darker, ice rich layer that itself either sublimes to reveal brighter material below or acts as a cold trap, attracting condensation of water vapor that brightens the surface. An alternative explanation invokes transport and deposition of dust on the surface from the cap interior, and later removal of that dust. The decrease in cap albedo and accompanying increase in near surface atmospheric stability may be related to the annual minimum of polar storm activity near northern summer solstice.  相似文献   

3.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   

4.
Water-ice and dust optical depths in Mars’ north polar region are mapped as function of season, latitude and longitude, and their characteristics and variability on a geographic, seasonal, and interannual basis are discussed. We use water-ice and dust optical depth data provided by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), covering nearly three northern spring and summer periods. We find that interannual variability exists in both the water ice and dust behavior, although there are trends that repeat year to year as well. The optical thickness of the north polar hood (NPH) exhibits interannually varying longitudinal structure, both during springtime recession and late-summer onset. We define the characteristics associated with the transition to and from the NPH and find that the disappearance occurs near Ls=75° and the reappearance near Ls=160-165°. We find that the late spring to early summer time frame is characterized by very low water-ice optical depths and enhanced dust activity, with a preference for lower water-ice and higher dust optical depths in the 0-90°W quadrant. We see possible evidence for stationary wavenumber 2 systems in a few of the maps examined.  相似文献   

5.
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars.  相似文献   

6.
An investigation of the Martian polar cap winds and their response to a variety of factors is carried out by a series of numerical experiments based on a zonally symmetric primitive equation model. These factors are the seasonal thermal forcing, mass exchange between polar caps and atmosphere, large-scale topography, and polar cap size. The thermal forcing sets up a circulation whose surface winds adjust to achieve angular momentum balance, with low-latitude easterlies and high-latitude westerlies. The maximum westerlies occur roughly where the horizontal temperature gradients are largest. This pattern changes when cap and atmosphere exchange mass. Corriolis forces acting on the net outflow or inflow produce easterlies at the surface during spring (outflow) and westerlies during winter (inflow). Topography appears to have a small effect, but cap size does play a role, the circulation intensity increasing with cap size. Peak surface winds occur when outflow or inflow is a maximum and are 20 m sec?1 during spring and 30 m sec?1 during winter for the northern hemisphere. The model results show that surface winds near the edge of a retreating polar cap are substantially enhanced, a result which is consistent with the Viking observations of local dust storm activity near the edge of the south polar cap during spring. The results also indicate that the surficial wind indicators near the south pole are formed during spring and those near the north pole during winter. The implication is that the high-latitude dune fields in the northern hemisphere are formed at a time when the terrain is being covered with frost. It is therefore suggested that the saltating particles are “snowflakes” which have formed by the mechanism proposed by Pollack etal. The model results for the winter simulation, which have formed by the mechanism transport by large-scale eddies, compare favorably with general circulation model (GCM) calculations. This suggests that the eddy transports may be less important than those associated with the net mass flow, and that 2-D climate modeling may be more succesful for Mars than Earth.  相似文献   

7.
Huiqun Wang  Jenny A. Fisher 《Icarus》2009,204(1):103-113
The complete archive of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGM) are used to study north polar clouds and dust storms that exhibit frontal structures during the spring and summer (Ls 0-180°). Results show that frontal events generally follow the edge of the polar cap during spring and mid/late summer with a gap in the distribution in early summer. The exact duration and timing of the gap vary from year to year. Ten to twenty percent of spring and summer time frontal events exhibit complex morphologies. Distinct temperature signatures are associated with features observed in images in many but not all cases. The general travel paths of the frontal events are eastward around the polar cap. Westward paths exist only at the edge of the polar cap in late spring/early summer. Occasionally, the paths curve toward or away from the polar cap in certain longitude sectors.  相似文献   

8.
Leonard J. Martin 《Icarus》1975,26(3):341-352
The 1956, 1971, and 1973 major dust storms on Mars affected the apparent contrast and extent of the northern polar hood. A survey of photography from seven apparitions indicates that this seasonal feature is consistently prominent and identifiable in the absence of major storms throughout half of the Martian year. During the 1956 dust storm, the hood was not seen for a period of over one month on Lowell photographs. The effects of a storm are also seen on 1971 International Planetary Patrol photographs; the hood quickly became faint and tenuous even in ultraviolet light, which normally shows it as very bright.Patrol photographs of 1973 cover the complete progression from a prominent and extensive hood before the storm, to an intermittent disappearance at the height of the storm, to the subsequent return of a normal hood as the storm died out. Hourly and daily mapping from these photographs indicates that the hood developed a southward protrusion during the first few days of the storm as it began its apparent recession. The hood was seen on at least one side of the planet on every day throughout the duration of the storm, although its normal extent and contrast were greatly reduced.  相似文献   

9.
We used Mars Express HRSC and OMEGA data to investigate mesospheric cloud features observed in the equatorial belt of Mars from December 2007 until early March 2008. This period corresponds to early northern spring of Martian year 29. The reflection peak at 4.26 μm in OMEGA data identifies the clouds as CO2 ice clouds. HRSC observed the clouds together with OMEGA in five orbits. Cloud features are most prominent in the shortwave HRSC colour channels with wavelength centers at 440 and 530 nm, but rarely visible in all other channels. In the period of Ls 0-36°, OMEGA and HRSC together detected mesospheric CO2 ice clouds in 40 orbits. They occur in a latitude belt of ±20° around the equator and at longitudes between 240°E (Tharsis) in the West and 30°E (Sinus Meridiani) in the East. The clouds were observed between 3 and 5 p.m. local time with mainly ripple-like to filamentary cloud forms. The viewing angles of the HRSC blue and green colour channels differ by 6.6° and the resulting parallax can be used to directly measure cloud heights by means of ray intersection. 17 HRSC data takes were found to exhibit clouds with heights from 66 to 83 km with an accuracy of 1-2 km. The pushbroom imaging technique also yields a time delay for the two observations in the order of 5-15 s close to periapsis, and therefore time-related cloud movements can be detected. A method was developed to determine the across-track cloud displacements, which can directly be translated to wind velocities. Zonal cloud movements could be measured in 13 cases and were oriented from East to West. Related wind speeds range between 60 and 93 m/s with an accuracy of 10-13 m/s.  相似文献   

10.
Michael D. Smith 《Icarus》2009,202(2):444-452
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330°) and December 2008 (MY 29, Ls=183°). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval [Smith, M.D., Bandfield, J.L., Christensen, P.R., Richardson, M.I., 2003. J. Geophys. Res. 108, doi:10.1029/2003JE002114] to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at ∼5:00 PM local time than in the TES retrievals at ∼2:00 PM, suggestive of possible local time variation of clouds.  相似文献   

11.
Richard W. Zurek 《Icarus》1978,35(2):196-208
This paper examines the solar heating of the Martian atmosphere during the 1971 global dust storm observed by Mariner 9. Radiative scattering as well as absorption is included by utilizing the delta-Eddington approximation to the full radiative transfer equation. The necessary optical parameters are generated by a Mie program which uses a size distribution and a complex refractive index inferred from a number of sources, particularly from recent analyces of Mariner 9 UVS and TV observations. Assuming uniform mixing of the dust, the solar heating per unit mass during a Martian global dust storm is remarkably uniform with height for small solar zenith angles. Heating rates may reach 80°K day? for overhead sunlight. Overall, 20% of the direct insolation is absorbed by the dust-laden atmosphere. Even optically thin widespread dust hazes may produce heating rates of several degrees Kelvin per day.  相似文献   

12.
Near-infrared observations of Uranus were made in October/November 2010 with the Gemini-North telescope in Hawaii, using NIFS, an integral field spectrograph, and the NIRI instrument in imaging mode. Observations were acquired using adaptive optics and have a spatial resolution of approximately 0.1–0.2″.The observed spectra along Uranus’ central meridian were analysed using a multiple-scattering retrieval algorithm to infer the vertical/latitudinal variation in cloud optical depth, which we compare with previous observations made by Gemini-North/NIFS in 2009 and UKIRT/UIST observations made between 2006 and 2008. Assuming a continuous distribution of small particles (r  1 μm, and refractive index of 1.4 + 0i) with the single scattering albedo set to 0.75 and using a Henyey–Greenstein phase function with asymmetry parameter set to 0.7 at all wavelengths and latitudes, the retrieved cloud density profiles show that the north polar zone at 45°N has continued to steadily brighten while the south polar zone at 45°S has continued to fade. As with our previous analyses we find that, assuming that the methane vertical profile is the same at all latitudes, the clouds forming these polar zones at 45°N and 45°S lie at slightly lower pressures than the clouds at more equatorial latitudes. However, we also find that the Gemini data can be reproduced by assuming that the main cloud remains fixed at ~2 bar at all latitudes and adjusting the relative humidity of methane instead. In this case we find that the deep cloud is still more opaque at the equator and at the zones at 45°N and 45°S and shows the same seasonal trends as when the methane humidity remain fixed. However, with this approach the relative humidity of methane is seen to rise sharply from approximately 20% at polar latitudes to values closer to 80% for latitudes equatorward of 45°S and 45°N, consistent with the analysis of 2002 HST observations by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287–302), with a possible indication of seasonal variability. Overall, Uranus appeared to be less convectively active in 2010 than in the previous 4 years, supporting the conclusion that now the northern spring equinox (which occurred in 2007) has passed, the atmosphere is settling back into the more quiescent state seen by Voyager 2 in 1986.  相似文献   

13.
Previous calculations of the surface wind stress required to raise dust on Mars are reconsidered and the threshold friction velocity is found to be about 2.0 m sec?1 with particles of 200–300 μm being the most easily lifted. With this friction velocity, the planetary resistance law yields a corresponding wind at the top of the Ekman layer of 60 m sec?1, and the logarithmic wind law yields a corresponding wind at the top of the Prandtl layer of 38 m sec?1. These speeds are somewhat lower than those used by previous investigators.Various mechanisms for producing such strong winds are examined and it is concluded that the general circulation, thermal effects of topography, mechanical effects of topography and dust devils are all capable of doing so.Dust storms associated with small-scale disturbances are found to be incapable of growth. A scaling analysis of the equations of horizontal motion and of hydrostatic balance shows that a dust cloud at least 10 km thick and several tens of km in radius can, by absorption of sunlight, generate temperature gradients that, in turn, produce winds capable of raising more dust. Thus, a feedback mechanism is suggested in which an initial dust cloud exceeding certain critical dimensions can grown to planetary size. The preference of large dust storms to occur at southern hemisphere summer solstice is attributed to the maximum of insolation at that time. It is suggested that the frequent origin in the Noachis-Hellas region may be due to orographic features of the right scale and to low height in that area.  相似文献   

14.
P. Thomas 《Icarus》1981,48(1):76-90
A comparison of crater-related wind markers in the north and south polar (40–90° latitude) regions of Mars has been made on the basis of comprehensive mapping from Viking Orbiter and Mariner 9 Images. Wind streaks show that present wind activity is most effective in both north and south in the southern spring and summer. This asymmetry is consistent with the present asymmetry of climate. The more massive intracrater dune fields are also oriented with the presently strongest winds. This alignment may reflect a long-term asymmetry in the effectiveness of northern and southern spring flow because reorientation times far exceed the period of cycles of hemispherical climate asymmetry, ≈51, 000 years. Streaks originating from dark crater splotches indicate that windflow away from the south pole is effective over a larger latitude range than it is in the north. This difference may be partly responsible for the contrasting distribution of dune sand in the north and south polar regions.  相似文献   

15.
C.A. Barth  M.L. Dick 《Icarus》1974,22(2):205-211
Ozone co-appears with the clouds of the polar hood in the winter hemisphere of Mars, but each is variable from day to day and location.to location. Both the appearance of ozone and the polar hood clouds correlate with the temperature of the atmosphere which varies from day to day and location to location. A cold, clean, dry atmosphere is conducive to the formation of ozone.  相似文献   

16.
Huiqun Wang 《Icarus》2007,189(2):325-343
Data from the third Mars Global Surveyor (MGS) mapping year (MY 26, 2003-2005) are used to investigate dust storms originating in the northern hemisphere. Flushing dust storms, which originate as frontal dust storms at the northern polar vortex edge and propagate southward through topographic channels, are observed immediately before and after a quiescent period that occurs around the northern winter solstice (240°<Ls<300°). Both the pre- and post-solstice active periods can be further divided into two sub-periods. The most vigorous of these flushing storms occurred during Ls 210-220° and Ls 310-320°. The lifted dust crossed the equator and accumulated in the southern hemisphere. These major dust storms enhanced the Hadley circulation and suppressed the lower-level baroclinic eddies in the northern mid and high latitudes. The 2-3 sol wave number m=3 traveling waves show the best correlation with flushing dust storms and can combine with other wave modes to produce storm tracks and fronts within individual sub-periods.  相似文献   

17.
A.W. Ward  K.B. Doyle 《Icarus》1983,55(3):420-431
Dunes in the Martian north polar erg show two dominant orientations. When seen at frost cap minimum, dunes north of 80°N record east winds, dunes south of 80°N record west winds. Many of the transverse dunes are considered to be reversing dunes. Dunes in two fields may have reversed at least once during the lifetime of the Viking Orbiters. Poor agreement exists among published predictive models of north polar winds and the interpretations derived from the major published map of the north polar dunes. We propose that the average polar winds are: (1) strong, off-pole northwest winds in fall; (2) moderate west winds in winter; (3) latitude-dependent weak to strong off-pole northeast winds in spring; and (4) weak west winds in summer. Viking images of near-polar clouds confirm much of the hypothesis. Images discussed in other studies can be given alternative interpretations that support this hypothesis also. Over millenia, the combination of reversing west and east winds could produce the binodal distributions of dune orientations observed at the north pole.  相似文献   

18.
In this paper we analyze some Viking infrared thermal mapping (IRTM) measurements of local Martian dust storms observed in the southern tropical region of the planet between Ls=225 and 262°. The derived opacities of these storms show that in the most opaque regions of the cloud, the optical thickness may be ≈6. Away from the individual clouds, the opacity is ≈2, which is still about four times the background level of dustiness in the Martian atmosphere. We find considerable structure in the derived opacity which will create corresponding variations in the atmospheric heating, which in turn may have an important feedback upon the local winds.  相似文献   

19.
Analysis of the 250-560 cm−1 spectral continuum of Titan's north polar hood just after spring equinox reveals, in addition to the ubiquitous aerosol, a tenuous but relatively uniform cloud of small particles permeating the lower stratosphere at altitudes between 58 and 90 km. Voyager 1 IRIS data suggest the particles are highly scattering, almost certainly condensed organics, with radii between 1 and 5 μm. Mole fractions for the condensed material range between 4×10−8 and 4×10−6, depending upon particle size. Vapor pressure arguments imply condensed nitriles near 90 km, the most likely being HCN, with condensed hydrocarbons such as C2H6 restricted to regions considerably nearer the tropopause. No direct chemical identification is possible. Negligible methane supersaturation in the troposphere at 67.4° N latitude, when compared with degrees of supersaturation at other latitudes, hints at precipitation fluxes of north polar stratospheric condensates during the previous northern winter that were perhaps three orders of magnitude greater than those at low latitudes during that time. A scale height of 1.5 times the density scale height above 160 km is reaffirmed for the photochemical aerosol of the north polar hood. There appears to be a depletion of aerosol somewhere below 160 km. An aerosol mole fraction ∼8×10−8 at 160 km is inferred, about 33% greater than the value derived in a previous study. The Cassini CIRS instrument, with its expanded spectral range and higher spectral resolution, should be able to provide highly complementary information for the time period covering most of the northern winter season.  相似文献   

20.
Observations of water ice clouds and dust are among the main scientific goals of the Planetary Fourier Spectrometer (PFS), a payload instrument of the European Mars Express mission. We report some results, obtained in three orbits: 37, 41 and 68. The temperature profile, and dust and water ice cloud opacities are retrieved from the thermal infrared (long-wavelength channel of PFS) in a self-consistent way using the same spectrum. Orographic ice clouds are identified above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Both volcanoes were observed near noon at Ls=337° and 342°, respectively. The effective radius of ice particles is preliminary estimated as 1-3 μm, changing along the flanks. The corresponding visual opacity changes in the interval 0.2-0.4 above Olympus and 0.1-0.6 above Ascraeus Mons. In the case of Ascraeus Mons, the ice clouds were observed mainly above the Southern flank of the volcano with maximum opacity near the summit. In the case of Olympus, the clouds were found above both sides of the top. A different type of ice cloud is observed at latitudes above 50°N (orbit 68) in the polar hood: the effective particle radius is estimated to be 4 μm. Below the 1 mb level an inversion in the temperature profiles is found with maximum temperature at around 0.6 mb. Along orbit 68 it appears above Alba Patera, then it increases to the north and decreases above the CO2 polar cap. Beginning from latitude 20°S above Tharsis (orbit 68), the ice clouds and dust contribute equally to the spectral shape. Further on, the ice clouds are found everywhere along orbit 68 up to the Northern polar cap, except the areas between the Northern flank of Ascraeus Mons (below 10 km) and the edge of Alba Patera. Orbit 41 is shifted from the orbit 68 by roughly 180° longitude and passes through Hellas. Ice clouds are not visible in this orbit at latitudes below 80°S. The dust opacity is anticorrelated with the surface altitude. From 70°S to 25°N latitude the vertical dust distribution follows an exponential law with a scale height of 11.5±0.5 km, which corresponds to the gaseous scale height near noon and indicates a well-mixed condition. The 9 μm dust opacity, reduced to zero surface altitude, is found to be 0.25±0.05, which corresponds to a visual opacity of 0.5-0.7 (depending on the particle size).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号