首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mars is the only extraterrestrial body which could host primitive lifeforms and also has the potential to host a human base in the near future. Towards fulfilling these objectives, several remote sensing missions and rover based missions have been sent to Mars. Still, confirmation of existing or extinct life on this planet in any form has not been achieved and possibly human missions at selected sites in the future are the key to addressing this problem. Here, we have used remote sensing data from Mars Reconnaissance Orbiter(MRO; NASA), Mars Global Surveyor(MGS; NASA), Mars Odyssey(NASA) and Mars Express(MEX; ESA) to devise an exploration strategy for one such area known as Hebrus Valles, which is a potential site for human exploration of the surface of Mars. A geological context map of the Hebrus Valles and Hephaestus Fossae region has been prepared and a candidate landing site has been proposed in the Hebrus Valles region. Suitable rover paths have been worked out from the proposed landing site for harnessing the science and resource potential of the region. The proposed landing site is located in the equatorial region at(20?40′N, 126?23′E) and due to its proximity to the Potential Subsurface Access Candidates(PSACs) in the region, such as sinkholes and skylights and also other resources such as crater ejecta, silicate material and fluvial channels, the site is appropriate for exploration of the region.  相似文献   

2.
《Icarus》1987,70(3):409-441
Thick sequences of layered deposits are found in the Martian Valles Marineris. They exhibit fine, nearly horizontal layering, and are present as isolated plateaus of what may have once been more extensive deposits. Individual sequences of layered deposits are as thick as 5 km. The greatest total thicknesses of deposits are found in Candor, Ophir, and Melas chasmata. individual layer thicknesses range from about 70 to 300 m. Some tilting of sequences is observed, but at the best image resolutions, no angular unconformities are detectable in the layers. The sequences of events in the canyons, as deduced from morphologic and stratigraphic evidence, was (1) graben formation in response to the tharsis uplift, (2) canyon wall retreat and canyon enlargement, roughly contemporaneous with formation of the layered deposits, (3) deep erosion of the layered deposits, (4) landsliding of the canyon walls, and (5) eolian erosion of the layered deposits, perhaps continuing up to the present. We consider four hypotheses for the origin of the layered deposits: they are eolian deposits, they are remnants of the material that makes up the canyon walls, they are deposits of explosive volcanic eruptions, or they were deposited in standing bodies of water. The rhythmic nature of the layers and their lateral continuity, horizontality, great thickness, and stratigraphic relationships with other units in the canyons all appear most consistent with deposition in an aqueous environment. If standing bodies of water existed in the Valles Marineris, they were almost certainly ice-covered. there are three ways in which sediment could have entered an ice-covered lake: down through the ice cover, up from the lake bottom, or in from the lake margins. Layers of sediment could have been transported downward through an ice cover by foundering or Rayleigh-Taylor instabilities, but it is not clear whether there was a viable mechanism for repeatedly accumulating thick sediment layers on top of the ice cover. Subaqueous volcanic eruption on the lake bottom does not suffer from many of the morphologic arguments that make origin by subaerial volcanism seem improbable. While this mechanism is attractive, there are no eruptive centers observed and there is no other direct evidence to support it. Because canyon enlargement took place at roughly the same time as layer deposition, debris from the canyon walls is an obvious and likely source for some of the material in the layered deposits; however, the volume of material removed from the canyon walls may be insufficient to account for all of the presently observed material. We conclude that there are several geologically feasible, but as yet unproven, mechanisms that could have led to formation of thick deposits in ice-covered paleolakes in the Valles Marineris. Present data are insufficient to choose conclusively among the various possibilities. Several types of data from the Mars Observer mission will be useful in further characterizing the deposits and clarifying the process of their origin. The deposits should be considered important targets for a future Mars sample return mission.  相似文献   

3.
Despite recent efforts from space exploration to sound the martian subsurface with RADAR, the structure of the martian subsurface is still unknown. Major geologic contacts or discontinuities inside the martian crust have not been revealed. Another way to analyze the subsurface is to study rocks that have been exhumed from depth by impact processes. The last martian mission, MRO (Mars Reconnaissance Orbiter), put forth a great deal of effort in targeting the central peaks of impact craters with both of its high resolution instruments: CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) and HiRISE (High Resolution Science Experiment). We analyzed the composition with CRISM and the physical characteristics on HiRISE of the rocks exhumed from depth from 31 impact craters in the vicinity of Valles Marineris. Our analyses revealed the presence at depth of two kinds of material: massive light-toned rocks and intact layers. Exhumed light-toned massive rocks are enriched in low calcium pyroxenes and olivine. Hydrated phases such as smectites and putative serpentine are present and may provide evidence of hydrothermal processes. Some of the rocks may represent portions of the volatile-rich, pre-Noachian martian primitive crust. In the second class of central peaks, exhumed layers are deformed, folded, and fractured. Visible-near infrared (VNIR) spectra suggest that they are composed of a mixture of olivine and high calcium pyroxene associated with hydrated phases. These layers may represent a Noachian volcanic accumulation of up to 18 km due to Tharsis activity. The spatial distribution, as well as the in-depth distribution between the two groups of rocks exhumed, are not random and reveal a major geologic discontinuity below the Tharsis lava plateau. The contact may be vertical over several kilometers depth suggesting the pre-existence of a steep basin (early giant impact or subsidence basin) or sagduction processes.  相似文献   

4.
《Icarus》1987,72(2):411-429
Detailed study of the Valles Marineris equatorial troughs suggests that the landslides in that area contained water and probably were gigantic wet debris flows: one landslide complex generated a channel that has several bends and extends for 250 km. Further support for water or ice in debris masses includes rounded flow lobes and transport of some slide masses in the direction of the local topographic slope. Differences in speed and emplacement efficiency between Martian and terrestrial landslides can be attributed to the entrainment of volatiles on Mars, but they can also be explained by other mechanisms. Support that the wall rock contained water comes from the following observations: (1) the water within the landslide debris must have been derived from wall rock; (2) debris appears to have been transported through tributary canyons; (3) locally, channels emerged from the canyons; (4) the wall rock apprarently disintegrated and flowed easily; and (5) fault zones within the troughs are unusually resistant to erosion. The study further suggests that, in the equatorial region of Mars, material below depths of 400–800 m was not desiccated during the time of landslide activity (within the last billion years of Martian history). Therefore the Martian ground-water or groundice reservoir, if not a relic from ancient times, must have been replenished.  相似文献   

5.
Estimates of discharge for martian outflow channels have spanned orders of magnitude due in part to uncertainties in floodwater height. A methodology of estimating discharge based on bedforms would reduce some of this uncertainty. Such a methodology based on the morphology and granulometry of flood-formed (‘diluvial’) dunes has been developed by Carling (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) and applied to Pleistocene flood-formed dunes in Siberia. Transverse periodic dune-like bedforms in Athabasca Valles, Mars, have previously been classified both as flood-formed dunes and as antidunes. Either interpretation is important, as they both imply substantial quantities of water, but each has different hydraulic implications. We undertook photoclinometric measurements of these forms, and compared them with data from flood-formed dunes in Siberia. Our analysis of those data shows their morphology to be more consistent with dunes than antidunes, thus providing the first documentation of flood-formed dunes on Mars. Other reasoning based on context and likely hydraulics also supports the bedforms' classification as dunes. Evidence does not support the dunes being aeolian, although a conclusive determination cannot be made with present data. Given the preponderance of evidence that the features are flood-formed instead of aeolian, we applied Carling's (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) dune-flow model to derive the peak discharge of the flood flow that formed them. The resultant estimate is approximately 2×106 m3/s, similar to previous estimates. The size of the Athabascan dunes' in comparison with that of terrestrial dunes suggests that these martian dunes took at least 1-2 days to grow. Their flattened morphology implies that they were formed at high subcritical flow and that the flood flow that formed them receded very quickly.  相似文献   

6.
7.
The Valles Marineris canyon system of Mars is closely related to large flood channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest Valles Marineris canyons, is connected at its west end to Melas Chasma and on its east end to chaotic terrain-filled Capri and Eos Chasmata. The area from central Melas to Eos Chasmata contains a 1500 km long and about 1 km deep depression in its floor. Despite the large volumes of groundwater that likely discharged from chaotic terrain in this depression, no evidence of related fluvial activity has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late Hesperian discharge of water possibly produced a lake (mean depth 842 m) spanning parts of the Valles Marineris depression (VMD). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (−3560 m). Simulated ponding in the VMD yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation.  相似文献   

8.
We address key factors involved in determining water flow conditions in outflow channels on Mars, including the temperature of the sub-surface water being released and the environmental conditions of low temperature, low atmospheric pressure, and low acceleration due to gravity. We suggest how some of the assumptions made in previous work may be improved. Our model considers the thermodynamic effects of simultaneous evaporation and freezing of water, and fluid dynamical processes including changes in flow rheology caused by assimilation of cold rock and ice eroded at the channel bed, and ice crystal growth due to water freezing. We model how far initially turbulent water could flow in a channel before it erodes and entrains enough material to become laminar, and subsequently ceases to erode the bed. An ice raft will begin to form on the flood while transition occurs between turbulent and laminar flow. Estimates are given for water transit times, ~17–19 h, initial water depths, 50–62 m, and average flow speeds, 5–12 m s?1, in the Mangala and Athabasca Valles. We show that these two outflow channels, and by implication others like them, could plausibly have been formed in single water release events. Resulting mean erosion rates are approximately 0.7 mm s?1, a factor of three greater than previous estimates based on combinations of estimates of flood duration and required water volumes. This is explained by the consideration of the effects of eroded ice and the physics of thermal erosion in the present study.  相似文献   

9.
The Mangala Valles is a 900-km long outflow channel system in the highlands adjacent to the south-eastern flank of the Tharsis bulge. This work was intended to answer the following two questions unresolved in previous studies: (1) Was there only one source of water (Mangala Fossa at the valley head which is one of the Medusae Fossae troughs or graben) or were other sources also involved in the valley-carving water supply, and (2) Was there only one episode of flooding (maybe with phases) or were there several episodes significantly separated in time. The geologic analysis of HRSC image 0286 and mapping supported by analysis of MOC and THEMIS images show that Mangala Valles was carved by water released from several sources. The major source was Mangala Fossa, which probably formed in response to magmatic dike intrusion. The graben cracked the cryosphere and permitted the release of groundwater held under hydrostatic pressure. This major source was augmented by a few smaller-scale sources at localities in (1) two mapped heads of magmatic dikes, (2) heads of two clusters of sinuous channels, and (3) probably several large knob terrain locals. The analysis of results of crater counts at more than 60 localities showed that the first episode of formation of Mangala Valles occurred ~3.5 Ga ago and was followed by three more episodes, one occurred ~1 Ga ago, another one ~0.5 Ga ago, and the last one ~0.2 Ga ago. East of the mapped area there are extended and thick lava flows whose source may be the eastern continuation of the Mangala source graben. Crater counts in 10 localities on these lava flows correlate with those taken on the Mangala valley elements supporting the idea that the valley head graben was caused by dike intrusions. Our observations suggest that the waning stage of the latest flooding episode (~0.2 Ga ago) led to the formation at the valley head of meander-like features sharing some characteristics with meanders of terrestrial rivers. If this analogy is correct this could suggest a short episode of global warming in Late Amazonian time.  相似文献   

10.
Most valley networks have been identified primarily in the heavily cratered uplands which are Noachian in age (>3.5 Gyr). A striking exception to this general observation is Warrego Valles located on the southeastern part of the Tharsis bulge. Recent data obtained by the Mars Orbiter Laser Altimeter, the Thermal Emission Imaging System (THEMIS) spectrometer and the Mars Orbiter Camera give new insight into the formation of valley networks and the early Mars climate. We focus our study on the southern Thaumasia region especially on Warrego Valles and determine the organisation of valleys in relation to regional topography and structural geology. Warrego Valles is the most mature valley network that incised the southern side of Thaumasia highlands. It developed in a rectangular-shaped, concave-up drainage basin. Four times more valleys are identified in THEMIS infrared images than in Viking images. Valleys exist on both sides of the main tributary contrary to what was visible in Viking images. Their distribution is highly controlled by topographic slope, e.g. there is a parallel pattern on the sides and dendritic pattern on the central part of Warrego Valles. We quantitatively analyse valley morphology and morphometry to determine the processes responsible for valley network formation. Warrego Valles displays morphometric properties similar to those of a terrestrial fluvial valley network. This valley network is characterised by seven Strahler's orders, a bifurcation ratio of 3, a length ratio of 1.7, a drainage density of 0.53 km−1 and a ruggedness number of 3.3. The hypsometric curve and integral (0.46) indicate that Warrego Valles reached the mature Davis’ stage. Valleys have undergone external degradation since their incision, which masks their main morphological characteristics. Our study supports the assertion that valley networks formed by fluvial processes controlled by an atmospheric water cycle. Further, they seem to develop by successive stages of erosion that occurred during Noachian through the late Hesperian.  相似文献   

11.
A suite of four feature types in a ∼20 km2 area near 10° N, 204° W in Athabasca Valles is interpreted to have resulted from near-surface ground ice. These features include mounds, conical forms with rimmed summit depressions, flatter irregularly-shaped forms with raised rims, and polygonal terrain. Based on morphology, size, and analogy to terrestrial ground ice forms, these Athabascan features are interpreted as pingos, collapsing pingos, pingo scars, and thermal contraction polygons, respectively. Thermal Infrared Mapping Spectrometer (THEMIS) data and geological features in the area are consistent with a sedimentary substrate underlying these features. These observations lead us to favor a ground ice interpretation, although we do not rule out volcanic and especially glaciofluvial hypotheses. The hypothesized ground ice that formed the mounds and rimmed features may have been emplaced via the deposition of saturated sediment during flooding; an alternative scenario invokes magmatically cycled groundwater. The ground ice implicit in the hypothesized thermal contraction polygons may have derived either from this flooding/ground water, or from atmospheric water vapor. The lack of obvious flood modification of the mounds and rimmed features indicates that they formed after the most recent flood inundated the area. Analogy with terrestrial pingos suggests that ground ice may be still extant within the positive relief mounds. As the water that flooded down Athabasca Valles emerged via a volcanotectonic fissure from a deep aquifer, any extant pingo ice may contain evidence of a deep subsurface biosphere.  相似文献   

12.
Expansion and contraction of desert margins around the globe have been inferred from a variety of proxy data and have since been linked, particularly in northern China and in the sub-Sahel, to changes in freshwater flux, vegetation cover, sea surface temperatures and, perhaps most importantly, monsoon circulations. We present a direct comparison of results from numerical general circulation model experiments for the mid-Holocene and for the Last Glacial Maximum (LGM) with the climatic conditions that have been inferred from loess–paleosol sequences taken from the Chinese Loess Plateau.During the mid-Holocene in northern China, the northwestward migration of the southeast desert margin that has been suggested by grain size analysis is also expressed in the model results. There is a statistically significant wetting of the Plateau region, and increased soil moisture is a consequence of an enhanced summer monsoon whose latent heat release deepens the cyclonic Tibetan low and brings increased low-level convergence and precipitation to the area. North of the desert region, this circulation dries the soil through enhanced atmospheric subsidence, although the northern margin of the desert does not migrate significantly.Expansion of the desert margin toward the southeast at the LGM is small, but there is a statistically significant drying of the Plateau. The local hydrological cycle is reduced, and there is an increase in large-scale atmospheric subsidence over the region that is caused by the presence of the Fennoscandian ice sheet upwind. Model results therefore suggest that, in addition to local micro- and mesoclimatic conditions, regional effects, such as monsoon circulations and distal orography, are also important factors in determining the location of desert margins.  相似文献   

13.
E.Z. Noe Dobrea  F. Poulet 《Icarus》2008,193(2):516-534
We have identified the presence of polyhydrated sulfates in association with crystalline gray hematite in outcrop units of the chaotic terrain east of Valles Marineris. The hematite is found in abundances of up to ∼18%, and is usually associated with thin (∼10's of meters) cliff-forming layers of intermediate-toned outcrops (albedo ∼0.15-0.20) as well as mantling deposits adjacent to the outcrops. The polyhydrated sulfates are usually restricted to the bedrock unit, and are not found in the adjacent mantling units. In analogy to the observations performed at the Opportunity landing site, we hypothesize that erosion of the sulfate/hematite-bearing outcrops leaves the hematite behind as a lag and breaks the sulfates down to wind-transportable sizes. We also find that the layered outcrops present, for the most part, embayment or on-lap relationships with respect to the hummocks that constitute the chaotic terrain, suggesting that these units were emplaced via subaqueous or aeolian deposition and/or flow after the event that formed the associated chaos. These morphological observations, in conjunction with the correlation between hematite and polyhydrated sulfates also suggest an aqueous genesis for the crystalline gray hematite in these chaotic units, and presents evidence for the action of aqueous processes after the formation of at least some of the chaotic units on Mars.  相似文献   

14.
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ∼42,300 km2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ∼1.4 μm, and ∼1.9 μm and a large deep band between ∼2.21 and ∼2.26 μm that are consistent with previous spectral analysis in other regions of LDs. We interpret these spectral characteristics as an enrichment of LDs in opaline silica or by Al-phyllosilicate-rich layers being overlain by hydroxylated ferric sulfate-rich layers. These alteration minerals are consistent with the aqueous alteration of LDs at low temperatures.  相似文献   

15.
We have used data from the Mars Reconnaissance Orbiter to study 30-80 m thick light-toned layered deposits on the plateaus adjacent to Valles Marineris at five locations: (1) south of Ius Chasma, (2) south of western Melas Chasma, (3) south of western Candor Chasma, (4) west of Juventae Chasma, and (5) west of Ganges Chasma. The beds within these deposits have unique variations in brightness, color, mineralogy, and erosional properties that are not typically observed in light-toned layered deposits within Valles Marineris or many other equatorial areas on Mars. Reflectance spectra indicate these deposits contain opaline silica and Fe-sulfates, consistent with low-temperature, acidic aqueous alteration of basaltic materials. We have found valley or channel systems associated with the layered deposits at all five locations, and the volcanic plains adjacent to Juventae, Ius, and Ganges exhibit inverted channels composed of light-toned beds. Valleys, channels, and light-toned layering along the walls of Juventae and Melas Chasmata are most likely coeval to the aqueous activity that affected the adjacent plateaus and indicate some hydrological activity occurred after formation of the chasmata. Although the source of water and sediment remains uncertain, the strong correlation between fluvial landforms and light-toned layered deposits argues for sustained precipitation, surface runoff, and fluvial deposition occurring during the Hesperian on the plateaus adjacent to Valles Marineris and along portions of chasmata walls.  相似文献   

16.
Utopia Planitia, one of the great northern plains of the Mars, is a region where landscape modification by cold-climate processes, i.e. glacial and periglacial, is thought to be widespread. In the middle latitudes of this region a metres-thick mantle, possibly comprising an ice-dust admixture, has been reported; the occurrence of putative periglacial landforms such as flat-floored (thermokarst-like) depressions, small-sized (possibly thermal-contraction) polygons and polygon trough/junction pits also has been noted. Recently, some workers have suggested that the location of the putative periglacial landforms in mid Utopia Planitia is synonymous with that of the mantle and that the former evolve as the latter degrades. By contrast, preliminary work by others has proposed that this synonymy is misperceived, for two reasons: first, the putative periglacial landforms often are observed in areas of Utopia Planitia where the mantle is absent; second, in areas where the two landscape types are observed concurrently, the putative periglacial landforms either underlie the mantle and, stratigraphically, must predate the mantle, or they are adjacent to the mantle and at a lower datum of elevation. If the geological evolution of Utopia Planitia is to be constrained properly, then each of these hypotheses must be explored.Towards this end, we have mapped the location and distribution of the mantle and putative periglacial landforms across a broad latitudinal and longitudinal swath of the Utopia Planitia and its margins (~55°–125°E and ~30°–60°N). This map incorporates all the relevant images of these features and provides a regional scale of analysis. Previous discussions and/or maps of cold-climate landscapes in Utopia Planitia have been much narrower in latitudinal and longitudinal focus. An evaluation of high-resolution images containing the mantle material and putative periglacial landforms, underpinned by the MOLA-based topographic profiles, comprises a local scale of analysis. This too has not been developed fully in earlier work.Using the map, high-resolution photogeological evidence and the MOLA topographic profiles, we show three things. First, in mid Utopia Planitia the reach of the putative periglacial landforms extends well beyond the location of the possible dust-ice mantle. Second, the latter overprints the former in all observed instances and, consequently, the former cannot be a product of the latter. Third, perhaps the origin and evolution of the putative periglacial landscapes in mid Utopia Planitia is not as recent as some workers have proposed.  相似文献   

17.
Ares Vallis is one of the greatest outflow channels of Mars. Using high-resolution images of recent missions to Mars (MGS, 2001 Odyssey, and Mars Express), we investigated Ares Vallis and its valley arms, taking advantage of 3-dimensional analysis performed using the high-resolution stereo capability of the Mars Express High Resolution Stereo Camera (HRSC). In our view, Ares Vallis is characterized by catastrophic flood landscapes partially superimposed by ice-related morphologies. Catastrophic flood landforms include erosional terraces, grooved terrains, streamlined uplands, giant bars, pendant bars, and cataract-like features. Ice-related morphologies include probable kame features, thermokarstic depressions, and patterned grounds. Our investigations outline that throughout the Hesperian age, Ares Vallis and its valley arms had been sculpted by several, time-scattered, catastrophic floods, originating from Iani, Hydaspis and Aram Chaos. Geomorphological evidence suggests that catastrophic floods were ice-covered, and that climatic conditions of Mars at this time were similar to those of the present day. At the end of each catastrophic flood, ice masses grounded, forming a thick stagnant dead-ice body. Each catastrophic flood was followed by a relatively brief period of warmer-wetter climatic conditions, originated as a consequence of catastrophic flooding. During such periods thermokarstic depressions originated, liquid water formed meandering channels, and ice-contact deposits were emplaced by ice-walled streams. Finally, the climate turned into cold-dry conditions similar to the present-day ones, and ice masses sublimated.  相似文献   

18.
Polygonal terrain is found in a variety of polar environments on Earth and Mars. As a result, many areas of northern Canada may represent ideal terrestrial analogues for specific regions of Mars - in particular the northern plains. In the Canadian Arctic, polygon troughs are commonly underlain by wedges of massive ice, with rare examples of other wedge types. If the same is true for Mars, this raises interesting implications for the processes that concentrate H2O at the Martian poles. This study uses an electromagnetic induction sensor to investigate the electromagnetic characteristics of terrestrial polar ice-wedge polygons. Surveys were conducted in two regions of the Canadian Arctic using a DUALEM-1S dual-geometry electromagnetic induction sensor, which measures electrical conductivity in the first 1.5-2 m of the subsurface. At locations where strong geomorphological evidence of ice was found, polygon troughs corresponded to local conductive anomalies. Trenching confirmed the presence of ice wedges at one site and allowed ground-truthing and calibration of the geophysical data. Previously unknown bodies of massive ice were also identified through the use of this geophysical technique. This study shows that an electromagnetic induction sounder is a useful instrument for detecting and mapping out the presence of subsurface ice in the Canadian Arctic. Taking together with its small size, portability and ruggedness, we suggest that this would also be a useful instrument for any future missions to Mars’ polar regions.  相似文献   

19.
地球轨道根数变化与第四纪冰期   总被引:1,自引:0,他引:1  
杨志根 《天文学进展》2001,19(4):445-456
介绍了米兰柯维奇(Milankovitch)天文气候学理论和第四纪地质时期以来冰期的研究进展。研究结果表明,地球上的冰体积具有近10万yr的变化周期,并伴有近4万yr和2万yr的变化周期,它们是由于地球的轨道根数变化导致的气候变迁所致;不同的地球物理资料中均存在上述类似的变化周期,表明气候变迁所导致的变化是全球性效应,证实米兰柯维奇天文理论是基本正确的;对天文气候学理论作了简要介绍,指出了米兰柯维奇天文气候学理论的可能不足,对引起最近百万yr以来的近10万yr气候变化周期的可能天文机制也作了介绍。  相似文献   

20.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号