首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roll damping characteristics of three models of a 3-ton class fishing vessel representing the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll decay tests in calm water and also in uniform head waves in a towing tank. Speed and roll initial angle and OG (distance between the centers of gravity and roll) are varied to check their dependence on roll damping. The experimental results are compared with the numerical results of mathematical modeling by the energy method and the energy dissipation patterns are also compared for these three models. The bilge keel contributes significantly to the increment of the roll damping for zero speed but as speed increases, the lift generated by the central wing contributes significantly to the roll damping increase. In addition, it is shown that the roll damping is more or less influenced by the regular head waves.  相似文献   

2.
The object of the new hull form is to provide a single hull which possesses long natural periods of roll and heave and has substantially reduced motion response amplitudes in very high sea states. Model tests and preliminary estimates indicated that the new hull form can be designed for roll and heave motions nearly equivalent to those of much larger semisubmersible units.All existing conventional marine construction barges have rectangular cross section hull. The new hull form consists of a system of upper side tanks and lower side tanks added onto a rectangular cross section hull. The upper tanks and lower tanks form longitudinal troughs on the port and starboard sides. Structural grillage of any open type is to connect the upper and lower tanks at the side of the vessel. Figure 1 indicates a profile and a typical transverse section of the new hull form. The new hull comprises the concept of reduced water plane area which is turn results in low transverse metacentric height and low tons per in. immersion. The novel features of combining low GMT and low TPI with extremely heavy damping and added mass of the entrained water characteristics result in very long natural periods of roll and heave and considerably small rolling and heaving amplitudes in high sea states. The open side shell plating on the side of the vessel functions to dissipate wave energy at the side of the vessel which would have otherwise been transmitted to the vessel and caused the vessel to respond. This paper presents the conceptual foundation and outline of the new hull form. Model test results are presented and implemented. Also presented is the design philosophy.  相似文献   

3.
The effects of LNG-tank sloshing on the global motions of LNG carriers   总被引:1,自引:0,他引:1  
The coupling and interactions between ship motion and inner-tank sloshing are investigated by a time-domain simulation scheme. For the time-domain simulation, the hydrodynamic coefficients and wave forces are obtained by a potential-thoery-based three-dimensional (3D) diffraction/radiation panel program in frequency domain. Then, the corresponding simulations of motions in time domain are carried out using convolution integral. The liquid sloshing in a tank is simulated in time domain by a Navier–Stokes solver. A finite difference method with SURF scheme is applied for the direct simulation of liquid sloshing. The computed sloshing force and moment are then applied as external excitations to the ship motion. The calculated ship motion is in turn inputted as the excitation for liquid sloshing, which is repeated for the ensuing time steps. For comparison, we independently developed a coupling scheme in the frequency domain using a sloshing code based on the linear potential theory. The hydrodynamic coefficients of the inner tanks are also obtained by a 3D panel program. The developed schemes are applied to a barge-type FPSO hull equipped with two partially filled tanks. The time-domain simulation results show similar trend when compared with MARIN's experimental results. The most pronounced coupling effects are the shift or split of peak-motion frequencies. It is also found that the pattern of coupling effects between vessel motion and liquid sloshing appreciably changes with filling level. The independent frequency-domain coupled analysis also shows the observed phenomena.  相似文献   

4.
The most common method of reducing roll motion of ship-shaped floating systems is the use of bilge keel which act as damping elements. The estimation of the damping introduced by bilge keel is still largely based on empirical methods. The present work adopts the CFD approach to the estimation of roll damping, both without and with bilge keel and validates the results with experiments conducted in a wave flume. Specifically, free oscillation tests are conducted at model scale to obtain roll damping, both by experiments and CFD simulation and reasonably good comparisons are obtained. The experiments also include PIV study of the flow field and attempt has been made to correlate the measured flow field with that obtained by CFD. The CFD methodology has the potential to determine rationally the size and orientation of bilge keels in design with reasonably accurate estimate of the additional roll damping that it provides to ship's roll motion.  相似文献   

5.
The best way of reducing roll motion is by increasing roll damping. Bilge keels are the most common devices for increasing roll damping. If more control is required, anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. This paper focuses on the design of passive U-tube tanks. The tank-liquid equation of motion is integrated simultaneously with the six-degree-of-freedom (6DOF) equations of the ship motion. The coupled set of equations is solved by using the Large Amplitude Motion Program ‘LAMP’, which is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the unstabilized roll angle exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of a S60-70 ship with a passive tank is investigated in various sea states with different encounter wave directions. It is found that passive anti-roll tanks tuned in the linear or nonlinear ranges are very effective in reducing the roll motion in the nonlinear range. The effect of the tank damping, frequency, and mass on the tank performance is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion for ships having a pitch frequency that is nearly twice the roll frequency in sea states 5 and 6.  相似文献   

6.
This study investigates the coupling effects of six degrees of freedom in ship motion with fluid oscillation inside a three-dimensional rectangular container using a novel time domain simulation scheme. During the time marching, the tank-sloshing algorithm is coupled with the vessel-motion algorithm so that the influence of tank sloshing on vessel motions and vice versa can be assessed. Several factors influencing the dynamic behavior of tank–liquid system due to moving ship are also investigated. These factors include container parameters, environmental settings such as the significant wave height, current velocity as well as the direction of wind, wave and flow current acting on the ship. The nonlinear sloshing is studied using a finite element model whereas nonlinear ship motion is simulated using a hybrid marine control system. Computed roll response is compared with the existing results, showing fair agreement. Although the two hull forms and the sea states are not identical, the numerical result shows the same trend of the roll motion when the anti-rolling tanks are considered. Thus, the numerical approach presented in this paper is expected to be very useful and realistic in evaluating the coupling effects of nonlinear sloshing and 6-DOF ship motion.  相似文献   

7.
Since the most severe roll motion occurs at resonance (known as synchronous rolling), the best way of reducing it is to increase the damping. The most common means of doing so is by the installation of bilge keels. If more control is required, both anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. The use of tanks with liquid free surfaces for reducing roll motion of ships is an old idea. Many researchers have studied the design of anti-roll tanks. However, most of the past effort has concentrated on studying the performance of anti-roll tanks in damping the roll motion of the ship. Little attention has been paid to the fluid motion inside the tank itself. Another important issue is the tank tuning. Proper tuning of the anti-roll tank, to match the ship's natural frequency, is very important in reducing the roll motion. This paper concentrates on the most familiar type, which is the U-tube passive tank as a mechanical absorber of roll motion. A detailed study, covering tank damping, mass, location relative to the ship CG, and tuning, is presented. New suggestions and observations are stated concerning tank damping and tuning.  相似文献   

8.
This paper presents bilge keel loads and hull pressure measurements carried out on a rotating cylinder in a free surface water basin. A flat plate bilge keel and one more complex shaped bilge keel were studied to investigate the geometry effect. The draft of the cylinder was varied to study the effect of the vicinity of the free surface on the bilge keel loads and hull pressures. The rotation axis of the cylinder was fixed to define a pure roll experiment (one degree of freedom).The cylinder was subject to forced oscillations of varying amplitude leading to a KC range of 0.3–16. Using Fourier analysis the first three harmonic coefficients representing the normal bilge keel load were derived. The first harmonic drag and inertia coefficients are in good agreement to existing experimental data obtained for wall bounded flat plates fitted in a U-shaped water tunnel as reported by Sarpkaya and O’Keefe (1996). New insight is gained by the fact that the addition of higher harmonic contributions is essential to capture the time varying bilge keel normal force.The pressure measurements next to the bilge keel are compared to measurements reported by Ikeda et al. (1979). Similar findings are obtained, showing that the pressure on the hull in front of the moving bilge keel is KC independent while the vortex system in the wake of the bilge keel leads to KC dependent hull pressure distributions. The hull pressure jump over the bilge keel correlates well to the force coefficient on the bilge keel. The complex nature of the vortex induced hull pressures is manifested. The empirically derived hull pressure distribution by Ikeda et al. (1979) for the time instant of maximum velocity is shown to correlate reasonably well to the measured data with some conservatism in the absolute value.Although a cylinder is very different from a ship-shaped section, the experiments provide essential insight into the physics associated with roll damping and into the factors that should be included in a roll damping prediction method.  相似文献   

9.
Many researchers have studied a wide range of nonlinear equations of motion describing a ship rolling in waves. In this study, a form of nonlinear equation governing the motion of a rolling ship subjected to synchronous beam waves is suggested and solved by the generalized Duffing's method in the frequency domain. Various representations of damping and restoring terms found in the literature are investigated and their solutions are analyzed by the above-mentioned method. Comparative results of nonlinear roll responses are obtained for four distinct vessel types at resonance conditions which constitute the worst situation. The results indicate the importance of roll damping and restoring, when constructing a nonlinear roll model. An inappropriate selection of damping and restoring terms may lead to serious discrepancies with reality, especially in peak roll amplitudes.  相似文献   

10.
The angle dependence of the roll damping moment is investigated by analysing experimentally obtained free roll decay records. Two ship models were used with and without bilge keels, also results with forward speed were obtained. The analysis indicate strong angle dependence and explains why the quadratic and cubic velocity dependent damping moments are successful in many cases.  相似文献   

11.
A numerical study is presented on roll damping of ships by solving Navier-Stokes equation.Two-Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-likecross sections are numerically simulated by use of the computational scheme previously developed by theauthors.The numerical results show that the location of the vortices is very similar to the existing experi-mental result.For comparison of vortex patterns and roll damping on various ship-like cross sections,vari-ous distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper.Itis found that there are two vortices around the midship-like section and there is one vortex around the foreor stern section.Based on these simulation results.the roll damping of a ship including viscous effects iscalculated.The contribution of pressure to the roll moment is larger than the contribution of frictionalshear stress.  相似文献   

12.
Head-wave parametric rolling of a surface combatant   总被引:1,自引:0,他引:1  
Complementary CFD, towing tank EFD, and nonlinear dynamics approach study of parametric roll for the ONR Tumblehome surface combatant both with and without bilge keels is presented. The investigations without bilge keels include a wide range of conditions. CFD closely agrees with EFD for resistance, sinkage, and trim except for Fr>0.5 which may be due to free surface and/or turbulence modeling. CFD shows fairly close agreement with EFD for forward-speed roll decay in calm water, although damping is over/under predicted for largest/smaller GM. Most importantly CFD shows remarkably close agreement with EFD for forward-speed parametric roll in head waves for GM=0.038 and 0.033 m, although CFD predicts larger instability zones at high and low Fr, respectively. The CFD and EFD results are analyzed with consideration ship motion theory and compared with Mathieu equation and nonlinear dynamics approaches. Nonlinear dynamics approaches are in qualitative agreement with CFD and EFD. The CFD and nonlinear dynamics approach results were blind in that the actual EFD radius of gyration kxx was not known a priori.  相似文献   

13.
A computer program is developed for hull/mooring/riser coupled dynamic analysis of a tanker-based turret-moored FPSO (Floating Production Storage and Offloading) in waves, winds, and currents. In this computer program, the floating body is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass, and radiation damping at various yaw angles are calculated from the second-order diffraction/radiation panel program WAMIT. The wind and current forces for various yaw angles of FPSO are modeled following the empirical method suggested by OCIMF (Oil Company International Marine Forum).

The mooring/riser dynamics are modeled using a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. The dynamics of hull, mooring lines, and risers are solved simultaneously at each time step in a combined matrix for the specified connection condition. For illustration, semi-taut chain-steel wire-chain mooring lines and steel catenary risers are employed and their effects on global FPSO hull motions are investigated. To better understand the physics related to the motion characteristics of a turret-moored FPSO, the role of various hydrodynamic contributions is analyzed and assessed including the effects of hull and mooring/riser viscous damping, second-order difference-frequency wave-force quadratic transfer functions, and yaw-angle dependent wave forces and hydrodynamic coefficients. To see the effects of hull and mooring/riser coupling and mooring/riser damping more clearly, the case with no drag forces on those slender members is also investigated. The numerical results are compared with MARIN's wave basin experiments.  相似文献   


14.
Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the continuity and momentum equations are satisfied simultaneously at each time step for oscillating flow. The numerical results show that the motion of vortices around a rolling ship hull is cyclical. It is found that the location of the vortices is very similar to the existing experimental result. Using these simulation results, we can calculate the roll damping of ships including viscous effects.  相似文献   

15.
16.
In order to predict the roll motion of a floating structure in irregular waves accurately, it is crucial to estimate the unknown damping coefficients and restoring moment coefficients in the nonlinear roll motion equation. In this paper, a parameter identification method based on a combination of random decrement technique and support vector regression (SVR) is proposed to identify the coefficients in the roll motion equation of a floating structure by using the measured roll response in irregular waves. Case studies based on the simulation data and model test data respectively are designed to validate the applicability and validity of the identification method. Firstly, the roll motion of a vessel is simulated by using the known coefficients from literature, and the simulated data are used to identify the coefficients in the roll motion equation. The identified coefficients are compared with the known values to validate the applicability of the identification method. Then the roll motion is predicted by using the identified coefficients. The prediction results are compared with the simulated data, and good agreement is achieved. Secondly, the model test data of a FPSO are used to identify the coefficients in the roll motion equation. Then the random decrement signature of the roll motion is predicted by using the identified coefficients and compared with that obtained from the model test data, and satisfactory agreement is achieved. From this study, it is shown that the identification method can be effectively applied to identify the coefficients in the nonlinear roll motion equation in irregular waves.  相似文献   

17.
A horizontal, circular cylinder fitted with one bilge keel is forced to rotate harmonically around its axis. The bilge keel load and hull pressure distribution are investigated. A fully submerged condition (infinite fluid), and three partly-submerged conditions are considered. A two-dimensional numerical study is performed, and the results are validated against recently published experimental data by van’t Veer et al. [30]. In addition, comparisons for mass and drag coefficients are also made with experimental data for plate in infinite fluid (Keulegan and Carpenter [8]), and wall-mounted plate (Sarpkaya and O’Keefe [9]) in oscillatory flow.A Navier–Stokes solver based on the Finite Volume Method is adopted for solving laminar flow of incompressible water. The free-surface condition is linearized by neglecting the nonlinear free-surface terms and the influence of viscous stresses in the free surface zone, while the body-boundary condition is exact. This simplified modeling of the problem required the mesh to be fine only around the bilge keels, leading to a total number of cells around N  1 ×104, which reduced computational cost significantly.The influence of draft and amplitude of oscillations on the bilge keel force and hull pressure distribution are considered. The bilge keel force is presented in terms of non-dimensional drag and mass coefficients including higher harmonic components. The numerical results are also compared with the industry standard empirical method for calculation of roll damping proposed by Ikeda et al. [4]. In general, a good agreement between the results of the present numerical method and the experimental data is obtained and the differences with those predicted by the empirical method are addressed.  相似文献   

18.
Parametric roll of a containership in head sea condition has been studied in the paper. A time domain routine for GZ righting arm calculation based on exact underwater hull geometry has been implemented into a two-degree-of-freedom procedure for roll response calculation. The speed variation due to e.g. added resistance has been accounted for in the model by the surge velocity. The ship roll motion due to a regular wave critical for parametric roll occurrence has been simulated, as well as the ship roll response in a severe stochastic sea. The present method has been compared with other existing methods for parametric roll prediction.  相似文献   

19.
The purpose of this paper is to validate a new method that can be used by offshore platform designers to estimate the added mass and hydrodynamic damping coefficients of potential Tension Leg Platform hull configurations. These coefficients are critical to the determination of the platform response particularly to high frequency motions in heave caused by sum-frequency wave forcing i.e. “springing”. Previous research has developed the means by which offshore platform designers can extrapolate anticipated full-scale hydrodynamic coefficients based on the response of individual model scale component shapes. The work presented here further evaluates the component scaling laws for a single vertical cylinder and quantifies the effects due to hydrodynamic interaction. Hydrodynamic interaction effects are established through a direct comparison between the superposition of individual hull component coefficients and those evaluated directly from complete hull configuration models. The basis of this comparison is established by the experimental evaluation of the hydrodynamic coefficients for individual hull components as well as partial and complete platform models. The results indicate that hydrodynamic interaction effects between components are small in heave, and validate component scaling and superposition as an effective means for added mass and damping coefficient estimation of prototype platforms. It is found that the dependency of damping ratio with KC for a TLP is almost identical to that of a single column, thus offering a scaling methodology for prototype damping ratio values.  相似文献   

20.
A submersible surface ship (SSS) is based on a novel concept that the SSS goes on surface like conventional ships in moderate seas but goes underwater in rough seas to the depth sufficient to avoid wave effects. The SSS has a wing system that produces downward lift to go underwater with preserving the residual buoyancy for its safety. The SSS is expected to be able to keep both safety and punctuality even if it encounters unexpected bad weather.The motion of the SSS is studied. The equations of motion are formulated and the procedures for estimating hydrodynamic derivatives are presented. The hydrodynamic derivatives are estimated for a SSS having a configuration, a hull with a pair of main wings and a pair of horizontal tail wings. Using these estimated hydrodynamic derivatives, calculation of the SSS motion is carried out.The calculation results show some specific aspects of the SSS especially for effects of the elevator of main wings and horizontal tail wings, aileron of main wings, rudder and propeller revolution. It is confirmed that the existence of static roll restoring moment and having large hull comparing with wing area play important roles in the motion of the SSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号