首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
It is important to examine the lateral shift rate variation of river banks in different periods. One of the challenges in this regard is how to obtain the shift rate of river banks, as gauging stations are deficient for the study of river reaches. The present study selected the Yinchuan Plain reach of the Yellow River with a length of 196 km as a case study, and searched each point of intersection of 153 cross-sections(interval between two adjacent cross-sections was 1.3 km) and river banks in 1975, 1990, 2010 and 2011, which were plotted according to remote sensing images in those years. Then the shift rates for the points of intersection during 1975–1990, 1990–2010 and 2010–2011 were calculated, as well as the average shift rates for different sections and different periods. The results show that the left bank of the river reach shifts mostly to the right, with the average shift rates being 36.5 m/a, 27.8 m/a and 61.5 m/a in the three periods, respectively. Contemporarily, the right bank shifts mostly to the right in the first period, while it shifts to the left in the second and third periods, with the average shift rates being 31.7 m/a, 23.1 m/a and 50.8 m/a in the three periods, respectively. The average shift rates for the left and right banks during the period 1975–2011 are 22.3 m/a and 14.8 m/a, respectively. The bank shift rates for sections A, B and C are different. The shift rate ratio of the left bank in the three sections is 1:7.6:4.6 for shift to the left and 1:1.7:3.8 for shift to the right, while that of the right bank is 1:1.8:1.2 for shift to the left and 1:5.6:17.7 for shift to the right during the period 1975–2011. Obviously, the average shift rate is the least in section A, while it is maximum in section B for shift to the left and in section C for shift to the right. The temporal variation of the shift rate is influenced by human activities, while the spatial variation is controlled by the local difference in bank materials.  相似文献   

2.
Lateral migration of the Bhagirathi River temporally creates unavoidable geomorphic hazards in West Bengal, India. The Bhagirathi River flows SW for ~67.30 km between the confluence point of Ajay and Jalangi rivers in East Burdwan and Nadia districts of West Bengal. The course of Bhagirathi is notably migration prone and cultivates problematic changes along its course over time. In the study, we have looked into its migration tendency and unpredictability for past 238 years and then predicted the lateral shifting of river centerline using temporal satellite imageries – Landsat-5(TM) of 1987(8, December), 1995(28, January), 2005(7, January) and LISS-IV satellite imagery(2017, 5 January);SOI Toposheet – 1968–1969(79 A/2, 79 A/3, 79 A/6 and 79 A/7) and Rennell's map of 1779. Other highlights are the quest of fluvial features, oxbow lakes, mid-channel bars, channel migration rate, meander geometry, channel sinuosity in different parts of river course and the parts that experience intensive bank erosion. The entire river course has been subdivided into three segments; viz. reaches A, B and C. Investigation displays that degree of sinuosity decreases from its anterior course(1968) to the existing course(2017). Reach-specific outputs display that reach B is highly sinuous(SI value 1.94 in 2017) and SI increases temporarily, whereas for reaches A and C it decreases with time. The rate of migration is higher in reach B than that in reaches C and A. The study displays a notably decreasing trend of migration in comparison with its previous lateral migration and shows that the migration nature over time is intensively inconsistent and unpredictable except very few portions of the river course. The nature of deposition within the river channel shows an unstable behavior during the entire period of the study. Meander geometry depicts a rapid change of river course innate to meander bends and shows a higher rate of migration by meander loop cut-off rather than lateral migration that reflects the inconsistency, erosion vulnerability and unpredictable nature of migration. The present work offers a valuable source to comprehend channel changes in Bhagirathi River and serve as an efficacious base for river-bank migration and erosion hazard planning and management.  相似文献   

3.
Deep-water navigation channels in the tidal reaches of the lower Yangtze River are affected by water and sediment fluxes that produce complex shoals and unstable channel conditions. The Fujiangsha reach is particularly difficult to manage, as it has many braided channels within the tidal fluctuation zone. In this study, hydrologic and topographic data from the Fujiangsha reach from 2012 to 2017 were used to examine the variations in deposition and erosion, flow diversion, shoals, and channel conditions. Since the Three Gorges Dam became operational and water storage was initiated, the Fujiangsha reach has shown an overall tendency toward erosion. Channels deeper than 10 m accounted for 83.7% of the total erosion of the Fujiangsha reach during 2012–2017. Moreover, the dominant channel-forming sediments have gradually changed from suspended sediments to a mixed load of suspended and bed-load sediments. Deposition volumes of these sediments has varied significantly among different channels, but has mainly occurred in the Fubei channel. Furthermore, periodic variations in the Jingjiang point bar have followed a deposition-erosion-deposition pattern, and the downstream Shuangjian shoal mid-channel bar has been scoured and shortened. Approximately 44.0% of the bed load from the upstream Fujiangsha reach is deposited within the 12.5-m deep Fubei channel. The increased erosion and river flow from the Jingjiang point bar and the Shuangjian shoal during the flood season constituted 59.3% and 40.7%, respectively, of the total amount of siltation in the Fubei channel.  相似文献   

4.
The question of how to generate maximum socio-economic benefits while at the same time minimizing input from urban land resources lies at the core of regional ecological civilization construction.We apply stochastic frontier analysis(SFA)in this study to municipal input-output data for the period between 2005 and 2014 to evaluate the urbanization efficiency of 110 cities within the Yangtze River Economic Belt(YREB)and then further assess the spatial association characteristics of these values.The results of this study initially reveal that the urbanization efficiency of the YREB increased from 0.34 to 0.53 between 2005 and2014,a significant growth at a cumulative rate of 54.07%.Data show that the efficiency growth rate of cities within the upper reaches of the Yangtze River has been faster than that of their counterparts in the middle and lower reaches,and that there is also a great deal of additional potential for growth in urbanization efficiency across the whole area.Secondly,results show that urbanization efficiency conforms to a"bar-like"distribution across the whole area,gradually decreasing from the east to the west.This trend highlights great intra-provincial differences,but also striking inter-provincial variation within the upper,middle,and lower reaches of the Yangtze River.The total urbanization efficiency of cities within the lower reaches of the river has been the highest,followed successively by those within the middle and upper reaches.Finally,values for Moran’s I within this area remained higher than zero over the study period and have increased annually;this result indicates a positive spatial correlation between the urbanization efficiency of cities and annual increments in agglomeration level.Our use of the local indicators of spatial association(LISA)statistic has enabled us to quantify characteristics of"small agglomeration and large dispersion".Thus,"high-high" (H-H)agglomeration areas can be seen to have spread outwards from around Zhejiang Province and the city of Shanghai,while areas characterized by"low-low"(L-L)patterns are mainly concentrated in the north of Anhui Province and in Sichuan Province.The framework and results of this research are of considerable significance to our understanding of both land use sustainability and balanced development.  相似文献   

5.
Hyporheic zone(HZ) influences hydraulic and biogeochemical processes in and alongside streams, therefore, investigating the controlling geographic factors is beneficial for understanding the hydrological processes in HZ. Slack water pool (SWP) is an essential micro-topographic structure that has an impact on surface water and groundwater interactions in the HZ during and after high flows. However, only a few studies investigate HZ surface water and groundwater exchange in the SWP. This study used the thermal method to estimate the HZ water exchange in the SWP in a segment of the Weihe River in China during the winter season. The findings show that on the flow-direction parallel to the stream, river recharge dominates the HZ water exchange, while on the opposing flow-direction bank groundwater discharge dominates the water exchange. The water exchange in the opposing flow-direction bank is about 1.6 times of that in the flow-direction bank. The HZ water exchange is not only controlled by flow velocity but also the location and shape of the SWP. Great water exchange amount corresponds to the shape with more deformation. The maximum water exchange within the SWP is close to the river bank where the edge is relatively high. This study provides some guidelines for water resources management during flooding events.  相似文献   

6.
The Yangtze River is the third largest river in the world and the longest and largest river in China.China has adopted a national strategy to protect the Yangtze River.A better understanding of the ecosystem services value along the Yangtze River would provide support for the Yangtze River protection strategy.Using Costanza’s method to estimate the ecosystem services value,the value of 10 ecosystem services was estimated within 1 km and 2 km from the Yangtze River in 2017.These 10 services were derived from the four established groupings of provisioning,regulating,supporting,and cultural services.This study compared and analyzed the changes in the ecosystem services value in the upper,middle,and lower reaches of the river,and in provinces,cities,and villages along the Yangtze River.The total ecosystem services value within 1 km and 2 km from the river was 37.208 and 43.769 billion yuan,respectively.Within 1 km,the ecosystem services value in the middle reaches was 12.93 billion yuan,while the next highest value was in the upper reaches at 12.45 billion yuan,and the downstream area had the smallest value of 11.855 billion yuan.Within 2 km,the value of upstream ecosystem services was the highest at 16.31 billion yuan,while the second highest value was in the middle reaches at 14.376 billion yuan,and the smallest value was in the downstream area at 13.083 billion yuan.In the Yangtze River Basin,regulating services played a leading role,accounting for 81.6%and 78.9%of the ecosystem services value within 1 km and 2 km from the river,respectively.Among the 10 ecosystem services,hydrological regulation was the most important,while the value of raw material production made the smallest contribution.Among the provinces and cities along the Yangtze River,the highest ecosystem services value was in Hubei Province,while the lowest values were in Shanghai and the Qinghai-Tibet Plateau.If villages within 1 km and 2 km from the river were to be relocated,the total regional ecological value would increase by 527 and 975 million yuan,respectively.  相似文献   

7.
长江中游马口-田家镇河段40年来河道演变   总被引:2,自引:1,他引:1  
Quantitative analysis was performed on the filling-scouring process for the river reach within Makou and Tianjiazhen, the middle Yangtze River with the help of GIS and DEM techniques. The research results indicate that the river reach between Makou and Tianjiazhen was dominated by the scouring process, and the magnitude of scouring is increasing over time. The intensity of scouring process is more in the deep and narrower river reach than shallower and wider ones. The river reach in the Makou and Tianjiazhen river knot is in fre-quent scouring and filling process, however the river reach upper to the Makou and lower to the Tianjiazhen river knot is in moderate scouring and filling process. The river reach just upstream or downstream to the river knot (e.g. Makou and Tianjiazhen river knot in this research) is dominated by filling process and the river reach in the river knot is dominated by the scouring process. Research results indicate no changes in the boundary of the river but the scouring and the filling magnitude in specific river channel is strong. The filling and the scouring process of the study river reach is greatly impacted by the sediments and water from the upstream of the study river reach. The construction of the Three Gorges Dam just upstream to Yichang will cause further decrease of the release of the sediment load to the middle and the lower Yangtze River basin, which will further intensify the scouring process of the river channel in the study river reach.  相似文献   

8.
Extreme weather is an important noise factor in affecting dynamic access to river morphology information.The response characteristics of river channel on climate disturbances draw us to develop a method to investigate the dynamic evolution of bankfull channel geometries(including the hydraulic geometry variables and bankfull discharges)with stochastic differential equations in this study.Three different forms of random inputs,including single Gaussian white noise and compound Gaussian/Fractional white noise plus Poisson noise,are explored respectively on the basis of the classical deterministic models.The model parameters are consistently estimated by applying a composite nonparametric maximum likelihood estimation(MLE)method.Results of the model application in the Lower Yellow River reveal the potential responses of bankfull channel geometries to climate disturbances in a probabilistic way,and,the calculated average trends mainly run to synchronize with the measured values.Comparisons among the three models confirm the advantage of Fractional jump-diffusion model,and through further discussion,stream power based on such a model is concluded as a better systematic measure of river dynamics.The proposed method helps to offer an effective tool for analyzing fluvial relationships and improves the ability of crisis management of river system under varying environment conditions.  相似文献   

9.
Soil erosion by wind is one of the most important processes in the changing the earth’s surface in semi-arid areas,Thus it is of great importance to study soil-erosion action.Using integrated technologies of remote sensing and geochemistry radioactivity iso-tope to extract regional soil-erosion information and to calculate quantity of soil erosion is accomplished successfully in this paper by means of beneficial experiments in the Talatan region of the Gonghe Basin,which is located in northeastern Qinghai-Tibet Pla-teau in China.The results show that the soil erosion by wind is not intensive in this region;the erosion types belong to the classes of very-soft erosion and soft-erosion type,which account for 47.12 percent and 35.58 percent,respectively,of the total study area.In total,two kinds of soil erosion account for 82.70 percent of the study area;only a small area belongs to the classes of severe erosion and very-severe erosion;this area is about 22.14 km2.Severe deposition activity has taken place in this region,and has appeared in a large area(322.67 km2),which accounts for 11.78 percent of the total study area.The results of this study show that soil erosion and deposition inventories are 870,000-1,150,000 tons and 550,000-780,000 tons,respectively,per year.The soil in-ventory shows about 320,000-370,000 tons from Talatan to Longyangxia reservoir per year.Using remote-sensing technology and 137Cs techniques is a valid means to analyze and to evaluate the quantity of soil erosion by wind in semi-arid environments.  相似文献   

10.
东北黑土漫岗区长坡面坡耕地侵蚀产沙沿程变化   总被引:7,自引:0,他引:7  
Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on seg-ments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm,Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation,rill cannot happen within the top 50 m,while in a year with large and inten-sive precipitation,rill can be formed starting even at 15 m from the top of the slope.  相似文献   

11.
1990年以来黄河第一湾齐哈玛河段砾质网状河的演变特征   总被引:1,自引:0,他引:1  
高超  王随继 《地理学报》2018,73(7):1352-1364
黄河第一湾的网状河型因其砾石质的河床质而与砂床质网状河明显不同,但是其具体的冲淤特性、河道与河间地的稳定性等是否与砂质网状河具有相似之处,尚待揭示。以齐哈玛乡主河道长约为12 km的砾石质网状河段为研究对象,利用1990年、2001年、2013年和2016年共4期Landsat遥感影像数据和2011年与2013年两期Google Earth高分辨率图像数据,结合野外采样观测分析其1990-2016年间的平面形态变化与沉积特征。结果表明:砾石质网状河整体具有很高的稳定性,众多分支河道与河间地无明显冲淤现象。网状带面积仅增加2.43%,陆地与水体面积比例接近1∶1;网状带部分小型河间湿地及河间岛屿呈现碎片化现象,导致河间湿地个数逐渐增加,最大增加率为62.16%。河道主流线长期左右迁移交替变化,且变化率相对稳定,受主流线迁移的影响,主河道内部河间岛屿形态变化较大,其河岸变化率为5 m/a。网状河众多支河道非常稳定,平均河宽变化率仅为1 m/a左右。河岸沉积物以细砂或粉砂为主,黏土含量较高,粒度分布曲线呈现多峰,这与砂质网状河流河岸以泥质沉积物为主略有不同,但河岸及河间湿地茂密的植被保护了众多分支河道免受侵蚀、维持了河道的稳定性,这也是砾石质网状河流体系具有高稳定性的重要原因。  相似文献   

12.
高超  王随继 《地理科学》2018,38(4):618-627
以黄河青藏高原阿万仓和采日玛两段主河道50 km与65 km长的网状河段为研究对象,利用2013年3期遥感影像绘制了不同流量下(176 m3/s,978 m3/s,1 610 m3/s)网状河段活动河道的分布变化图,结合DEM数据分析了现有河道在流量增加过程中的空间分布格局和潜在定量关系。研究结果表明:根据流量大小划分出的3类活动河道,其分布规律基本是后者位于前者的两侧,据此可以推断,网状河分支河道基本是从主河道向两侧逐渐发展的。对于阿万仓河段,在河谷和河间地相对宽阔处,每个河道断面上3类活动河道数的比值为1:1.67:2.25;而在河谷较窄的地方,该比值为1:1.22:1.33。在采日玛河段,该比值分别为1:1.3:1.4和1:0.95:1.16。在宽阔的草原湿地河段,当网状河的主河道发生弯曲时,弯道内侧的活动河道数要大于弯道外侧的活动河道数。在平坦开阔的河谷地带,断面上的活动河道线密度与河谷宽度之间呈现出极好的线性负相关关系;而峡谷地带由于两侧高地形的限制,河谷宽窄不一,活动河道的线密度相对较大、且差别也较大。  相似文献   

13.
Both interchannel wetlands and multi-channels are crucial geomorphologic units in an anastomosing river system. Planform characteristics and development of interchannel wetlands and multi-channels control the characteristics of anastomosing rivers. To understand the role that interchannel wetlands play in the development of anastomosing rivers, a study was conducted on the Maqu Reach of the Upper Yellow River (MRUYR), a gravel-bed anastomosing river characterized by highly developed interchannel wetlands and anabranches. Geomorphologic units in the studied reach were extracted from high resolution satellite imagery in Google Earth. The size distributions of interchannel wetlands and interchannel wetland clusters (IWCs), a special combination of interchannel wetlands and anabranches, were investigated. Geomorphologic parameters, including the ratio of interchannel wetland area to IWC area (P), shoreline density (Dl), and node density (Dn) were used to analyze planform characteristics of IWCs and the development of multi-channels in the studied reach. The results suggest that small or middle sized interchannel wetlands and large or mega sized IWCs are more common at the study site. The area of IWC (Su) is highly correlated with other geomorphologic parameters. P increases with increasing Su, and the upper limit is about 80%, which indicates that the development of interchannel wetlands and anabranches in the IWC is in the equilibrium stage. In contrast, Dl and Dn show a tendency to decrease with increasing Su due to diverse evolution processes in IWCs with different sizes. There are three main reasons leading to the formation of IWCs: varying stream power due to the meandering principal channel; development of the river corridor due to the weakening of geologic structure control; and high stability of interchannel wetlands due to conservation by shoreline vegetation.  相似文献   

14.
黄河流域河型转化现象初探   总被引:9,自引:0,他引:9  
黄河以其高含沙水流以及下游河道的高沉积速率而著称于世。迄今的研究, 主要针对黄河中下游流域的 侵蚀、水文泥沙和河床演变方面的研究, 而对黄河流域主支流发生河型转化的现象关注不够。在黄河的不同河段, 河型的变化频繁, 类型多样, 现象复杂, 是研究者不可回避的科学问题。本文选取黄河上游第一弯的玛曲河段、黄河 上游末段托克托附近河段及黄河下游高村上下河段来研究河型转化的形式及影响因素。玛曲河段沿流向发生网状 河型→弯曲河型→辫状河型的转化现象, 该系列转化呈现出由极稳定河型向极不稳定河型的转化, 这与世界上通 常可以观察到的沿流向不稳定河型向稳定河型转化的情况完全相反。这主要受到地壳的抬升、上下峡谷卡口、水动 力特征、边界沉积物特征及植被的区域分布等因素的控制。托克托附近沿流向发生了弯曲河型→顺直河型转化的 现象, 这是较稳定河型向极稳定河型的转化, 主要受到边界沉积物、水动力等因素的控制。高村上下河段沿流向发 生的辫状河型→弯曲河型转化的现象, 是由极不稳定河型向较稳定河型转化的现象, 河道边界沉积物及水动力是 其主要控制因素, 人工大堤只是限制了河道摆动的最大幅度, 对河型的性质影响不大, 但其上游河段修筑的水库导 致下泻的水流在辫状河段的侵蚀能力增强而使其边界沉积物粗化, 并将泥质物大量沉积在弯曲河段, 客观上促进 了河型的转化。  相似文献   

15.
刘博一  王随继 《地理学报》2017,72(7):1195-1206
河间湿地是网状河流体系中与多河道系统同等重要的地貌单元,其特征和发育程度与河道系统共同决定着网状河流的特性。本文以黄河玛曲网状河段作为研究对象,利用高分辨率Google Earth影像对研究河段河道与河间湿地等微地貌单元进行提取,利用湿地面积与湿地数对河间湿地的组成进行了分析,利用河间湿地面积占比、岸线密度、分汊点密度3个地貌参数,对河间湿地群体(河间湿地与分支河道特定组合体)的平面形态及多河道发育程度进行了研究。结果表明,河间湿地个体以中小型的为主,河间湿地群体则以大型和巨型的为主。河间湿地群体的发育程度与河间湿地群体面积(Su)明显相关,河间湿地面积占比(P)随Su的增大而增大,P值70%是河间湿地发育成熟的指标,而P值80%基本是河间湿地发育的上限值,此时河间湿地与分支河道基本达到动态平衡态。岸线密度、分汊点密度随Su的增加呈减小趋势,这种变化主要是由于不同大小河间湿地群体中河道发育过程差异导致。黄河玛曲段河间湿地群体的形成在于弯曲主河道的主导作用、地形限制因素削弱导致的河道带的发育,以及植被维护的河岸使得河间湿地群体得以较长时间保存。  相似文献   

16.
Quaternary sedimentation in the western Makgadikgadi basin of north central Botswana is evaluated on the basis of new evidence from satellite imagery and sedimentological analyses. Thematic Mapper imagery interpretation, combined with field evidence, has led to the identification of geomorphological features which are mainly composed of light grey calcareous sandstones (formerly calcretes) overlain by dark grey sands. The literature suggests that palaeolake Makgadikgadi I formed and developed intermittently after initial downwarping in the early–mid Pleistocene. The calcareous sandstones were formed when calcium carbonate precipitation took place in pre-existing Kalahari sands along the western shoreline of Makgadikgadi I. Field evidence, supported by X-ray diffraction and SEM analyses, indicates that CaCO3precipitated mainly in marshy conditions around plant roots and stems and in association with bacteria in embayments along the lakeshore. The sandstones thickened and became partially indurated as a result of increasing palaeolake levels. Deposition was terminated by renewed tectonism which uplifted the shoreline zone relative to the lake basin, leading to falling palaeolake levels. Post-uplift reworking led to case hardening and pedogenic calcrete formation in the upper sections of the calcareous sandstones. Sedimentary conditions altered during the late Pleistocene. Extensive distributaries from the proto-Okavango system incised the shoreline ridge contributing to the filling of Makgadikgadi II. Satellite data suggest that the proto-Okavango rivers formed a series of fan deltas at this time along the western Makgadikgadi basin. Widespread dispersal of fluvial grey sands took place as a result of basin tilting which led to anastomosing channels flowing southward possibly around 18,000 B.P. These results, although preliminary in nature, augment previous geomorphological analyses by adding some detail in terms of depositional environments and by providing a tentative age and origin for the ubiquitous grey sands.  相似文献   

17.
网状河流研究进展述评   总被引:6,自引:2,他引:6  
网状河流作为一种新的冲积河流类型已经引起地貌学家、水利学家和沉积学家的关注 ,成为河流地貌领域、河流沉积领域以及河流水动力领域的研究热点之一。本文在介绍网状河流基本概念的基础上 ,综合国内外的研究成果 ,从河流的平面形态、边界条件、沉积特征、水动力条件以及在河型演化序列中的位置等方面 ,对网状河流的研究进展作一较全面的述评 ,并指出目前研究的薄弱环节 ,以利于研究者把握网状河流的研究现状 ,并推动对网状河流的进一步探讨。  相似文献   

18.
Intensive hydro technical works were conducted in the middle course of the Obra River (Poland) at the beginning of the nineteenth century. The ‘natural’ river course (functioning before the major construction works) was transformed into three artificial canals. Ground‐penetrating radar investigations, ground‐truthed with coring and remote sensing surveys, were conducted to reconstruct the course taken by the river prior to the hydro technical works. This work demonstrated that the Obra formerly had an anastomosing planform. Radiocarbon dating indicated that the earliest of the retraced channels were active before 9000 bp . The retraced river system was formed in a proglacial stream valley perpendicularly cut by remains of subglacial tunnels, now partly filled with lakes. The planform consisted of one or two major channels and a number of secondary channels formed by avulsions. During the last 2000 years, some of the avulsions may have been caused by anthropogenic interventions. The sequences of channel fill deposits indicate that particular channels changed from major to secondary ones. Sand deposits filling the bottom and middle parts of the channels point to an important role of upstream sediment supply causing in‐channel aggradation triggering the avulsions. Moreover, spatial variability in river patterns was found within the anastomosing system. Valley sections with meandering anabranches, anastomosing patterns with traces of a lateral migration and traces of a transition from meandering to anastomosing planform were distinguished.  相似文献   

19.
网状河流多重河道形成过程的实验模拟   总被引:2,自引:1,他引:1  
王随继  薄俊丽 《地理科学进展》2004,23(3):34-42,i004
网状河流是受到人们关注的新型冲积河流,其水文特征、地貌特征和沉积特征已经不同程度地被揭示。然而,网状河流的水槽实验迄今仍是空白,而水槽模拟实验是在时间和空间都大大缩小之后的自然界河流演变过程的再现。本文报道的是在实验水槽中通过原河道决口后网状河流的发生和演变过程。实验初始条件为:水槽辅助区的待决口河道,目标区为轴部略微下凹的长方形泛滥平原(4.5 m×16.5 m),其上下层分别为1.5 cm厚、中值粒径为0.0132 mm的高岭土层和0.5 m厚、中值粒径为0.188mm的天然细砂层,从5.5 m-17 m区段的平均纵比降为0.0058,17m-22m区段的平均纵比降为0.0077。采用的定常流量为3 L/s,悬移质输沙量在前3小时为4.5g/min,其后为1.2 g/s。实验总历时50小时。实验初期,目标区的上游段以垂向加积作用为主,中游以随机侵蚀为主,下游以溯源侵蚀为主,在13.5小时左右,相互连通的多重河道的网状河流体系的雏形基本展现。此后至25.5小时,网状河道的演变以下蚀为主演变为以适度的侧蚀,但河岸的后退幅度很小,标志网状河道逐步过渡到成熟期。从25.5小时至50小时,个别河道的局部废弃和决口是该成熟期网状河道演变的新特点。实验成功地模拟了天然网状河流的形成、发展和演变过程,同时也证明了它是不同于分汉河流的河型。这不  相似文献   

20.
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号