共查询到20条相似文献,搜索用时 67 毫秒
1.
Gerard Gilmore 《Astrophysics and Space Science》1981,79(2):483-490
Models of compact, high brightness temperature sources such as quasars and active galactic nuclei often predict substantial inverse-compton scattered flux to be produced at high frequencies. As these fluxes are not observed, it is necessary to assume that extreme relativistic and/or anisotropic effects dominate the source. The often used equations to include these effects however are derived with several simplifying assumptions, which may not always be consistent with the derived source parameters (for example, the assumption of no time dependence in a violently variable quasar may not be appropriate). We therefore present here an explicit derivation of the dependence of the rate of inverse compton scattering on anisotropies in the source, to emphasise the importance and number of assumptions required in the derivation. 相似文献
2.
The problem of single Compton scattering is considered and the resulting spectrum, angular distribution and polarization of scattered photons in a general case are obtained. The inverse Compton scattering (ICS) for arbitrary energies of electronsE and photons 0 is investigated in detail. In the case of isotropically-distributed initial photons and relativistic electrons, a strong rise of the scattered spectrum near the upper edge takes place, starting from the values of the characteristic parameterb4E
010 (in units of mc2=1). The energy-loss rate of relativistic electrons due to ICS is calculated. It is shown that the relativistic electrons of the energiesE100 MeV, when scattering on the X-rays with 0~10KeV, transmit the dominant part of their energy to the photons which fall after scattering into the energy range of the electrons (100 MeV).The radiation spectrum of ICS, as well as the energy-losses of relativistic electrons distributed by power-lawE
–, are calculated. The radiation spectrum reveals the power-law behaviour with the different indices in two limits: the dependence –(1)/2 at 01 gradually changes to –(+1) ln (0) law for 01. 相似文献
3.
Jeanette I. Weise 《Astrophysics and Space Science》2014,351(2):539-560
Studies of Compton scattering by relativistic electrons in a strong magnetic field have been restricted to either incident photon angles θ′ aligned along the magnetic field B or incident photon energies ω′ below the first pair creation threshold $\omega'_{PC}$ . When these restrictions are relaxed there is a resonance in Compton scattering associated with pair creation (PC), that is analogous to but independent of known resonances associated with gyromagnetic absorption (GA). As with the GA resonances, that may be labeled by the Landau quantum numbers of the relevant states, there is a sequence of PC resonances where the scattering cross section diverges. In this paper, the lowest divergence is studied for incident photon energies satisfying ω′2sin2 θ′/(2eB)?1, assuming that the scattering electron is in its ground (Landau) state. This lowest resonance affects only parallel-polarized photons. 相似文献
4.
A. Peraiah 《Journal of Astrophysics and Astronomy》1990,11(2):193-208
We have solved the equation of radiative transfer with Compton scattering. The specific intensity has been expanded by Taylor series with respect to wavelength and the first three terms have been retained in solving the transfer equation. It is noted that in a medium stratified in plane parallel layers, the multiple Compton scattering redistributes the initial energy over a range of 3 to 5 Compton wavelengths. A good fraction of the incident radiation is transferred across the layer with redistribution in wavelength, the actual value depending on the optical thickness of the medium 相似文献
5.
T. Padmanabhan 《Journal of Astrophysics and Astronomy》1997,18(1):87-90
The inverse Compton scattering of high energy electrons by photons is discussed and a simple derivation of the total power
radiated is presented. The derivation is completely classical and exhibits clearly why similar formulas are applicable in
the case of inverse compton scattering and synchroton radiation. 相似文献
6.
You Jun-han 《Chinese Astronomy and Astrophysics》1983,7(4):315-321
This paper deals with the radio spectra of synchrotron sources with spherically symmetric non-homogeneities. It is pointed out that the Type-c spectra can be produced by such a non-homogeneity even if the source is optically thin. This model is particularly advantageous in interpreting sources with no compact characteristics and yet showing a Type-c spectrum, and the observed decrease in source size with increasing frequency. In addition, it is possible to give a uniform interpretation of the four spectral types on the basis of such a non-homogeneity. 相似文献
7.
We have considered the spontaneous Compton scattering of radiation in the magnetic field by both a single ultra-relativistic electron and a system of electrons with the power-law energy distribution. The degree of radiation anisotropy was assumed arbitrary. Parameters of the scattering-generated radiation for the entire range of post-scattering photon energies are given in the paper for all possible scattering modes. 相似文献
8.
9.
We investigate the effects of inverse Compton scattering by electrons and positrons in the unshocked winds of rotationally-powered binary pulsars. This process can scatter low energy target photons to produce gamma rays with energies from MeV to TeV. The binary radio pulsars PSR B1259−63 and PSR J0045−73 are both in close eccentric orbits around bright main sequence stars which provide a huge density of low energy target photons. The inverse Compton scattering process transfers momentum from the pulsar wind to the scattered photons, and therefore provides a drag which tends to decelerate the pulsar wind. We present detailed calculations of the dynamics of a pulsar wind which is undergoing inverse Compton scattering, showing that the deceleration of the wind of PSR B1259−63 due to ‘inverse Compton drag' is small, but that this process may confine the wind of PSR J0045−73 before it attains pressure balance with the outflow of its companion star. We calculate the spectra and light curves of the resulting inverse Compton emission from PSR B1259−63 and show that if the size of the pulsar wind nebula is comparable to the binary separation, then the γ-ray emission from the unshocked wind may be detectable by atmospheric Cherenkov detectors or by the new generation of satellite-borne γ-ray detectors such as INTEGRAL and GLAST. This mechanism may therefore provide a direct probe of the freely-expanding regions of pulsar winds, previously thought to be invisible. 相似文献
10.
A. -H. Zhou 《Astrophysics and Space Science》1994,222(1-2):107-111
In this paper a method of estimating the magnetic field strength,B, in a homogeneous microwave burst source with simplified expressions for the synchrotron radiation is presented. An approximate formula of the magnetic field is obtained using the method. Once the magnetic field is estimated the total number of energetic electrons along the line of sightN L can be estimated also. The errors ofB andN L have been given. It is found that this method is useful for semiquantitative investigations of models of radio burst sources. 相似文献
11.
Donald B. Melrose 《Astrophysics and Space Science》1970,6(2):321-337
Electrons radiating synchrotron radiation develop a pitch angle anisotropy, and so become unstable to the coherent emission of hydromagnetic waves. The evolution of the coupled system of anisotropic electrons and waves is studied in the absence of any dissipation of the waves in the ambient medium. The anisotropy of the electrons approaches a steady state in which the anisotropy is energy independent and of orderv
A/c (v
A=Alfvén speed). The conditions for this small degree of anisotropy to be maintained are examined.Due to this scattering the bend in the synchrotron spectrum, from an inverse power law with index to one with index 4/3+1, due to an initial or recurrent injection of electrons, could only occur at infrared or higher frequencies. 相似文献
12.
Grzegorz Wardzi&#;ski rzej A. Zdziarski 《Monthly notices of the Royal Astronomical Society》2001,325(3):963-971
We investigate how the presence of a non-thermal tail beyond a Maxwellian electron distribution affects the synchrotron process as well as Comptonization in plasmas with parameters typical for accretion flows on to black holes. We find that the presence of the tail can significantly increase the net (after accounting for self-absorption) cyclo-synchrotron emission of the plasma, which then provides seed photons for Compton upscattering. Thus, the luminosity in the thermally Comptonized spectrum is enhanced as well. The importance of these effects increases with both increasing Eddington ratio and black hole mass. The enhancement of the Comptonized synchrotron luminosity can be as large as ∼103 and ∼105 for stellar and supermassive black holes, respectively, when the energy content in the non-thermal tail is 1 per cent.
The presence of the tail only weakly hardens the thermal Comptonization spectrum but it leads to the formation of a high-energy tail beyond the thermal cut-off, which two effects are independent of the nature of the seed photons. Since observations of high-energy tails in Comptonization spectra can constrain the non-thermal tails in the electron distribution and thus the Comptonized synchrotron luminosity, they provide upper limits on the strength of magnetic fields in accretion flows. In particular, the measurement of an MeV tail in the hard state of Cyg X-1 by McConnell et al. implies the magnetic field strength in this source to be at most an order of magnitude below equipartition. 相似文献
The presence of the tail only weakly hardens the thermal Comptonization spectrum but it leads to the formation of a high-energy tail beyond the thermal cut-off, which two effects are independent of the nature of the seed photons. Since observations of high-energy tails in Comptonization spectra can constrain the non-thermal tails in the electron distribution and thus the Comptonized synchrotron luminosity, they provide upper limits on the strength of magnetic fields in accretion flows. In particular, the measurement of an MeV tail in the hard state of Cyg X-1 by McConnell et al. implies the magnetic field strength in this source to be at most an order of magnitude below equipartition. 相似文献
13.
Donald B. Melrose 《Astrophysics and Space Science》1969,5(2):131-149
The observed energy spectra in synchrotron sources are power laws,N (E)=KE
–, with the distribution in peaked around 2.5. These are consistent with initially injected spectra with between 1 and 2, subsequently steepened by synchrotron losses. Contrary to the results of Kardashev (1962), it is shown that statistical acceleration when coupled with synchrotron losses lead naturally to the formation of flat stationary spectra with 1. These stationary spectra have bends near the energy at which synchrotron losses balance the energy gains by acceleration. Above this bend the spectrum tends to =2. The time evolution of an initial spectrum towards the stationary spectrum is investigated. It is suggested that the initially flat spectra with 1 to 1.5 observed in some variable sources result from an incomplete approach to the stationary spectrum, and that in sources with constant acceleration spectra with 2 are to be expected. 相似文献
14.
A. L. McNamara Z. Kuncic K. Wu 《Monthly notices of the Royal Astronomical Society》2008,386(4):2167-2172
Compton scattering within the accretion column of magnetic cataclysmic variables (mCVs) can induce a net polarization in the X-ray emission. We investigate this process using Monte Carlo simulations and find that significant polarization can arise as a result of the stratified flow structure in the shock-ionized column. We find that the degree of linear polarization can reach levels up to ∼8 per cent for systems with high accretion rates and low white dwarf masses, when viewed at large inclination angles with respect to the accretion column axis. These levels are substantially higher than previously predicted estimates using an accretion column model with uniform density and temperature. We also find that for systems with a relatively low-mass white dwarf accreting at a high accretion rate, the polarization properties may be insensitive to the magnetic field, since most of the scattering occurs at the base of the accretion column where the density structure is determined mainly by bremsstrahlung cooling instead of cyclotron cooling. 相似文献
15.
A simple relation between observational parameters of radiosources that allows to state the predominance in the X-ray emission of either the Compton-synchrotron or the Compton black-body effect is derived.The obtained results suggest that the Compton-synchrotron contribution is dominant in compact radiosources.Operated by the CNICT with the participation of the University of Buenos Aires and the Comisión Nacional de Estudios Geoheliofísicos. 相似文献
16.
For a number of extragalactic sources of infrared radiation, for example some quasars and nuclei of Class I Seyfert galaxies that are also radio sources, there is a characteristic maximum in the radiation spectrum atv1011 Hz. We discuss a model in which this feature is regarded as intrinsic to the process of electron production, and in which the radiation is produced by the synchrotron mechanism. A two-component version of the model can be employed in the interpretation of the composite radiation spectra of several sources — 3C 84 (NGC 1275), 3C 120 and 3C 273. 相似文献
17.
Grzegorz Wardzi&#;ski Andrzej A. Zdziarski 《Monthly notices of the Royal Astronomical Society》2000,314(1):183-198
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars. 相似文献
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars. 相似文献
18.
The non-thermal shielding effects on the inverse Compton scattering are investigated in astrophysical non-thermal Lorentzian plasmas. The inverse Compton power is obtained by the modified Compton scattering cross section in Lorentzian plasmas with the blackbody photon distribution. The total Compton power is also obtained by the Lorentzan distribution of plasmas. It is found that the influence of non-thermal character of the plasma suppresses the inverse Compton power in astrophysical Lorentzian plasmas. It is also found that the non-thermal effect on the inverse Compton power decreases with an increase of the temperature. In addition, the non-thermal effect on the total Compton power with Lorentzan plasmas increases in low-temperature photons and, however, decreases in intermediate-temperature photons with increasing Debye length. The variation of the total Compton power is also discussed. 相似文献
19.
G. Ghisellini F. Haardt & R. Svensson 《Monthly notices of the Royal Astronomical Society》1998,297(2):348-354
The high-energy continuum in Seyfert galaxies and galactic black hole candidates is likely to be produced by a thermal plasma. There are difficulties in understanding what can keep the plasma thermal, especially during fast variations of the emitted flux. Particle–particle collisions are too inefficient in hot and rarefied plasmas, and a faster process is called for. We show that cyclo-synchrotron absorption can be such a process: mildly relativistic electrons thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium function is Maxwellian at low energies, with a high-energy tail when Compton cooling is important. Assuming that electrons emit completely self-absorbed synchrotron radiation and at the same time Compton scatter their own cyclo-synchrotron radiation and ambient UV photons, we calculate the time-dependent behaviour of the electron distribution function, and the final radiation spectra. In some cases, the 2–10 keV spectra are found to be dominated by the thermal synchrotron self-Compton process rather than by thermal Comptonization of UV disc radiation. 相似文献